Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 048201    DOI: 10.1088/0256-307X/27/4/048201
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Numerical Simulations of Calcium Ions Spiral Wave in Single Cardiac Myocyte

BAI Yong-Qiang1, ZHU Xing2,3

1College of Electronic Science, Daqing Petroleum Institute,Daqing 1633182School of Physics, State Key Laboratory for Artificial Microstructureand Mesoscopic Physics, Peking University, Beijing 1008713National Center for Nanoscience and Technology, Beijing 100080
Cite this article:   
BAI Yong-Qiang, ZHU Xing 2010 Chin. Phys. Lett. 27 048201
Download: PDF(779KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The calcium ions (Ca2+) spark is an elementary Ca2+ release event in cardiac myocytes. It is believed to buildup cell-wide Ca2+ signals, such as Ca2+ transient and Ca2+ wave, through a Ca2+-induced Ca2+ release (CICR) mechanism. Here the excitability of the Ca2+ wave in a single cardiac myocyte is simulated by employing the fire-diffuse-fire model. By modulating the dynamic parameters of Ca2+ release and re-uptake channels, we find three Ca2+ signaling states in a single cardiac myocyte: no wave, plane wave, and spiral wave. The period of a spiral wave is variable in the different regimes. This study indicates that the spiral wave or the excitability of the system can be controlled through micro-modulation in a living excitable medium.

Keywords: 82.39.Rt      87.16.Xa      89.75.Kd     
Received: 28 December 2009      Published: 27 March 2010
PACS:  82.39.Rt (Reactions in complex biological systems)  
  87.16.Xa (Signal transduction and intracellular signaling)  
  89.75.Kd (Patterns)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/048201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/048201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BAI Yong-Qiang
ZHU Xing
[1] Wang S Q, Wei C L, Zhao G L, Brochet D X P, Shen J X, Song L S, Wang W, Yang D M and Cheng H P 2004 Circ. Res. 94 1011
[2] Cheng H, Lederer W J and Cannell M B 1993 Science 262 740
[3] Cheng H, Lederer M R, Lederer W J and Cannell M B 1996 Am. J. Physiol. 270 C148
[4] Falcke M, Bär M, Lechleiter J D and Hudson J L 1999 Physica D 129 236
[5] Falcke M 2003 New J. Phys. 5 96
[6] Guatimosim S, Dilly K, Ferno Santana L, Saleet Jafri M, Sobie E and Lederer W 2002 J. Mol. Cell Cardiol. 34 941
[7] Davidenko J M, Pertsov A V, Salomonsz R, Baxter W and Jalife J 1992 Nature 355 349
[8] J ter Keurs H E D, Zhang Y M and Miura M 1998 Cardiovasc. Res. 40 444
[9] Bai Y, Tang A, Wang S and Zhu X 2008 J. Microsc. 229 555
[10] Keizer J, Smith G D, Ponce-Dawson S andPearson J E 1998 Biophys. J. 75 595
[11] Timofeeva Y and Coombes S 2004 Phys. Rev. E 70 062901
[12] Meron E and Pelcé P 1988 Phys. Rev. Lett. 60 1880
[13] Hakim V and Karma A 1999 Phys. Rev. E 60 5073
[14] Gyorke S and Fill M 1993 Science 260 807
[15] Ishida H, Genka C, Hirota Y, Nakazawa H and Barry W H 1999 Biophys. J. 77 2114
[16] Cagalinec M, Chorvat Jr. D, Mateasik A and Bacharova L 2007 J. Cell. Mol. Med. 11 598
[17] Wang S Q, Song L S, Lakatta E G and Cheng H 2000 Nature 410 592
[18] Tang J, Jia Y, Yi M, Ma J and Yu G 2008 Chin. Phys. Lett. 25 1149
[19] Ouyang Q, Swinney H L and Li G 2000 Phys. Rev. Lett. 84 1047
[20] Li B W, Sun L L, Chen B and Ying H P 2007 Chin. Phys. Lett. 24 2415
Related articles from Frontiers Journals
[1] KONG De-Ren, XIE Hong-Bo** . Assessment of Time Series Complexity Using Improved Approximate Entropy[J]. Chin. Phys. Lett., 2011, 28(9): 048201
[2] ZHANG Jiang**, WANG You-Gui . Size Dependency of Income Distribution and Its Implications[J]. Chin. Phys. Lett., 2011, 28(3): 048201
[3] TANG Jun**, QU Li-Cheng, LUO Jin-Ming . Robustness of Diversity Induced Synchronization Transition in a Delayed Small-World Neuronal Network[J]. Chin. Phys. Lett., 2011, 28(10): 048201
[4] ZHENG Bo-Jin, **, WANG Jian-Min, CHEN Gui-Sheng, JIANG Jian, SHEN Xian-Jun . Hidden Tree Structure is a Key to the Emergence of Scaling in the World Wide Web[J]. Chin. Phys. Lett., 2011, 28(1): 048201
[5] LI Cong-Xin, CHEN Xiao-Fang, WANG Peng-Ye, WANG Wei-Chi. Effects of CRAC Channel on Spatiotemporal Ca2+ Patterns in T Cells[J]. Chin. Phys. Lett., 2010, 27(2): 048201
[6] SHANG Wan-Li, WANG De-Zhen. Concentric-Ring Patterns in a Helium Dielectric Barrier Discharge at Atmospheric Pressure[J]. Chin. Phys. Lett., 2007, 24(7): 048201
[7] HUA Da-Yin, WANG Lie-Yan. Formation of Vegetation Patterns and Hysteresis Phenomena in Arid and Semiarid Zones[J]. Chin. Phys. Lett., 2007, 24(12): 048201
[8] LIU Shu-Hua, DONG Li-Fang, LIU Fu-Cheng, LI Shu-Feng, LI Xue-Chen, WANG Hong-Fang. Experimental Study on Spiral Patterns in Dielectric Barrier Discharge System[J]. Chin. Phys. Lett., 2006, 23(12): 048201
[9] ZHANG Hui-Jie, WANG Peng-Ye, ZHAO Ying-Ying. Dynamics of the Spiral Tip in a Closed Belousov--Zhabotinsky Reaction[J]. Chin. Phys. Lett., 2005, 22(6): 048201
[10] ZHANG Hui-Jie, WANG Peng-Ye, ZHAO Ying-Ying. Light-Gradient-Induced Spiral Wave Drifts in a Belousov--Zhabotinsky Reaction[J]. Chin. Phys. Lett., 2005, 22(2): 048201
[11] SHI Xiao-Min, LIU Zeng-Rong. An Intracellular Calcium Oscillations Model Including Mitochondrial Calcium Cycling[J]. Chin. Phys. Lett., 2005, 22(12): 048201
[12] WANG Hong-Li, OU-YANG Qi. Transition to Antispirals in the Complex Ginzburg--Landau Equation[J]. Chin. Phys. Lett., 2004, 21(8): 048201
[13] YING Yang-Jun, LI Wei-Hua. An Intracellular Calcium Oscillation Model and its Property [J]. Chin. Phys. Lett., 2003, 20(7): 048201
[14] YING Yang-Jun, HUANG Zu-Qia. Effects of Time-Delay on Intracellular Ca2+ Concentration Oscillations[J]. Chin. Phys. Lett., 2001, 18(5): 048201
Viewed
Full text


Abstract