Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 044702    DOI: 10.1088/0256-307X/27/4/044702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping

LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying

Department of Mechanics, School of Mechanical Engineering,Tianjin University, Tianjin 300072State of Key Laboratory of Engines, Tianjin University, Tianjin 300072
Cite this article:   
LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying 2010 Chin. Phys. Lett. 27 044702
Download: PDF(518KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A two-degree-of-freedom model of iced, electrical quad bundle conductor is developed to comprehensively describe the different galloping behaviors observed. By applying centre manifold and invertible linear transformation, the co-dimension-2 bifurcation is analyzed. The relationships of parameters between this system and the original system are obtained to analyze and to control the galloping of the quad iced bundle conductor. The space trajectory, Lyapunov exponent and Lyapunov dimension are investigated via numerical simulation to present a rigorous proof of existence of chaos.

Keywords: 47.20.Ky      82.40.Bj      02.30.Hq     
Received: 29 October 2009      Published: 27 March 2010
PACS:  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/044702       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/044702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Fu-Hao
ZHANG Qi-Chang
TAN Ying
[1] Den Hartog J P 1932 Trans. AIEE 51 1074
[2] Simpson A 1965 Proc. IEEE 112 315
[3] Blevins R D 1974 PhD dissertation (Pasadena: California University)
[4] Blevins R D and Iwan W D 1974 J. Appl. Mech. 41 1113
[5] Yu P et al 1993 J. Eng. Meth. 119 2426
[6] Yu P et al 1993 J. Eng. Meth. 119 2404
[7] Yu P, Popplewell N et al 1991 J. Appl. Mech. 58 784
[8] Yu P, Shah A H et al 1992 J. Appl. Mech. 59 140
[9] Desai Y M et al 1995 Comput. Struct. 57 407
[10] Kollar L E et al 2008 IEEE. Trans. Power Deliver 23 1097
[11] Kollar L E et al 2009 Cold Reg. Sci. Tech. 57 91
[12] Ni G Y, Yan L and Yuan N C 2008 Chin. Phys. B 17 3629
[13] Liu F H et al 2010 Chin. Phys. Lett. 27 034703
[14] Farzaneh M 2008 Atmospheric Icing of Power Networks (London: Springer) p 218
[15] Zhang Q C et al 2008 Chin. Phys. Lett. 25 1905
[16] Zhang W 1997 Ph.D. dissertation (Tianjin: Tianjin University) (in Chinese)
[17] Corsi L and Gentile G 2008 J. Math. Phys. 49
[18] Silva C P 1993 IEEE Trans. Circ. Syst. I 40 675
[19] Grebogi C et al 1983 Phys. Rev. Lett. 50 935
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 044702
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 044702
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 044702
[4] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 044702
[5] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 044702
[6] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 044702
[7] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 044702
[8] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 044702
[9] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 044702
[10] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 044702
[11] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 044702
[12] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 044702
[13] CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye, WANG Wei-Chi. Cytoplasmic Ca2+ Dynamics under the Interplay between the Different IP3R Gating Models and the Plasma Membrane Ca2+ Influx[J]. Chin. Phys. Lett., 2010, 27(1): 044702
[14] MENG Pan, LU Qi-Shao. Dynamical Effect of Calcium Pump on Cytosolic Calcium Bursting Oscillations with IP3 Degradation[J]. Chin. Phys. Lett., 2010, 27(1): 044702
[15] Osama Yusuf Ababneh, Rokiah@Rozita Ahmad. Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems[J]. Chin. Phys. Lett., 2009, 26(8): 044702
Viewed
Full text


Abstract