CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
A Study on Porosity Distribution in Nanoporous TiO_2 Photoelectrodes for Output Performance of Dye-Sensitized Solar Cells |
XU Wei-Wei1,2, HU Lin-Hua2, DAI Song-Yuan2, ZHANG Chang-Neng2, LUO Xiang-Dong1, JING Wei-Ping1 |
1Jiangsu Provincial Key Lab of ASIC Design, Nantong University, Nantong 226019 2Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, PO Box 1126, Hefei 230031 |
|
Cite this article: |
XU Wei-Wei, HU Lin-Hua, DAI Song-Yuan et al 2010 Chin. Phys. Lett. 27 038202 |
|
|
Abstract Porosity as one of the crucial factors to film morphology affects the overall electrical current-voltage characteristics of dye-sensitized solar cell (DSC). We search for the short-circuit current density, the open-circuit voltage and the maximum power output as the main functional parameters of DSC closely related to porosity under different film thickness. The theoretical analyses show some exciting results. As porosity changes from 0.41 to 0.75, the short-circuit current density shows the optimal value when the film thickness is 8-10 μm. The open-circuit voltage presents different variation tendencies for the film thicknesses within 1-8 μm and within 10-30 μm. The porosity is near 0.41 and the film thickness is about 10 μm, DSC will have the maximum power output. The theoretical studies also illustrate that given a good porosity distribution, DSC can obtain an excellent short-circuit current characteristic, which agrees well with the experimental results reported in previous literature.
|
Keywords:
82.45.Yz
87.64.Ks
87.16.Dp
81.40.-z
|
|
Received: 19 October 2009
Published: 09 March 2010
|
|
PACS: |
82.45.Yz
|
(Nanostructured materials in electrochemistry)
|
|
87.64.ks
|
(Electron and photoelectron)
|
|
87.16.dp
|
(Transport, including channels, pores, and lateral diffusion)
|
|
81.40.-z
|
(Treatment of materials and its effects on microstructure, nanostructure, And properties)
|
|
|
|
|
[1] O'Regan B and Gr\"{atzel M 1991 Nature 353 737 [2] Hagfeldt A and Gr\"{atzel M 1995 Chem. Rev. 95 49 [3] Bach U, Lupo D et al 1998 Nature 395 583 [4] Gr\"{atzel M 2004 J. Photochem. Photobiol. A 164 3 [5] Dai S Y and Wang K J 2003 Chin. Phys. Lett. 20 953 [6] Xu W W et al 2005 Acta. Phys. Sin. 54 5943 (in Chinese) [7] Liu X Z et al 2006 Chin. Phys. Lett. 23 2606 [8] S\"{odergren S et al 1994 J. Phys. Chem. 98 5552 [9] Cao F et al 1996 J. Phys. Chem. 100 17021 [10] de Jongh P E et al 1996 Phys. ReV. Lett. 77 3427 [11] Solbrand A et al 1997 J. Phys. Chem. B 101 2514 [12] de Jongh P E et al 1997 J. Phys. Chem. B 101 2716 [13] Schwarzburg K and Willig F 1999 J. Phys. Chem. B 103 5743 [14] Bisquert J et al 1999 Solid State Electrochem. 3 337 [15] Zeng L Y et al 2004 Chin. Phys. Lett. 21 493 [16] Hu L H et al 2005 Chin. Phys. Lett. 22 493 [17] Nazeeruddin M K et al 2005 J. Am. Chem. Soc. 127 16835 [18] Dai S Y et al 2005 Solar Energy Mater. Solar Cells 85 447 [19] Ni M et al 2006 Solar Energy Mater. Solar Cells 90 1331 [20] Nakade S Saito Y et al 2003 J. Phys. Chem. B 107 8607 [21] Liang L Y et al 2006 J. Phys. Chem. B 110 12404 [22] Xu W W 2008 J. Nantong University 7 70 (in Chinese) [23] Hu L H et al 2005 Acta Phys. Sin. 54 1914 (in Chinese) [24] Lee K M et al 2009 J. Power Sources 188 635 [25] Wang Z S et al 2004 Coord. Chem. Rev. 248 1381 [26] Hu L H, Dai S Y et al 2007 J. Phys. Chem. B 111 358 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|