Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 037302    DOI: 10.1088/0256-307X/27/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Effect of Uniaxial Strain on Band Gap of Armchair-Edge Graphene Nanoribbons
HAN Mei, ZHANG Yong, ZHENG Hong-Bo
Department of Applied Physics, College of Science, Nanjing University of Technology, Nanjing 210009
Cite this article:   
HAN Mei, ZHANG Yong, ZHENG Hong-Bo 2010 Chin. Phys. Lett. 27 037302
Download: PDF(540KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on the tight-binding approximation, analytical solutions of the energy dispersion and band gap of armchair-edge graphene nanoribbons (AGNRs) under uniaxial strains are derived. Subsequent numerical results on band gap are found to be consistent with the analytical solutions. It is shown that the energy gap of AGNRs is sensitive to the uniaxial strains and is predicted to change with a V shape as a function of the applied uniaxial strain. It is interesting to find that the uniaxial strain could induce metal-semiconductor transition for the AGNRs with a width of n=3m+2 ((3m + 2)-AGNRs) and semiconductor-metal-semiconductor phase transition for the (3m + 1)-AGNRs, but no phase transition is induced for the 3m-AGNRs.
Keywords: 73.61.Wp      62.25.-g      73.22.-f     
Received: 27 August 2009      Published: 09 March 2010
PACS:  73.61.Wp (Fullerenes and related materials)  
  62.25.-g (Mechanical properties of nanoscale systems)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/037302       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/037302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAN Mei
ZHANG Yong
ZHENG Hong-Bo
[1] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[2] Neto A H C, Guinea F and Peres N M R 2009 Rev. Mod. Phys. 81 109
[3] Charlier J C, Blas\'{e X and Roche S 2007 Rev. Mod. Phys. 79 677
[4] Avouris P, Chen Z H and Perebeinos V 2007 Nature Nanotech. 2 605
[5] Barboza A P M et al 2008 Phys. Rev. Lett. 100 256804
[6] Huang M Y et al 2008 Phys. Rev. Lett. 100 136803
[7] Souza A G et al 2005 Phys. Rev. Lett. 95 217403
[8] Yang L and Han J 2000 Phys. Rev. Lett. 85 154
[9] Cao J, Wang Q and Dai H J 2003 Phys. Rev. Lett. 90 157601
[10] Ni Z H et al 2008 ACS Nano 2 2301
[11] Yang L, Anantram M P, Han J and Lu J P 1999 Phys. Rev. B 60 13874
[12] Harrison W A 1989 Electronic Structure and the Properties of Solids (New York: Dover)
[13] Zhang Y, Yu G L and Dong J M 2006 Phys. Rev. B 73 205419
[14] Novoselov K S et al 2004 Science 306 666
[15] Novoselov K S et al 2005 Nature 438 197
[16] Zhang Y B, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[17] Berger C et al 2006 Science 312 1191
[18] White C T et al 2007 Nano Lett. 7 825
[19] Gunlycke D and White C T 2008 Phys. Rev. B 77 115116
[20] Brey L and Fertig H A 2006 Phys. Rev. B 73 195408
[21] Nakada K and Fujita M 1996 Phys. Rev. B 54 17954
[22] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[23] White C T et al 2007 Nano Lett. 7 825
Related articles from Frontiers Journals
[1] PAN Li-Jun, JIA Yu, **, SUN Qiang, HU Xing . Electronic Properties of Boron Nanotubes under Uniaxial Strain: a DFT study[J]. Chin. Phys. Lett., 2011, 28(8): 037302
[2] WANG Yong-Juan **, CHENG Jie, YUE Xian-Fang . Electronic Properties of the N2C4 Cluster of DNA[J]. Chin. Phys. Lett., 2011, 28(8): 037302
[3] WANG Lin-Jun, CAO Gang, TU Tao**, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping** . Ground States and Excited States in a Tunable Graphene Quantum Dot[J]. Chin. Phys. Lett., 2011, 28(6): 037302
[4] TAN Hao, WANG Hai-Ying**, XIA Meng-Fen, KE Fu-Jiu, BAI Yi-Long . Molecule Statistical Thermodynamics Simulation of Nanoindentation of Single Crystal Copper with EAM Potential[J]. Chin. Phys. Lett., 2011, 28(4): 037302
[5] OUYANG Fang-Ping, **, CHEN Li-Jian, XIAO Jin, ZHANG Hua . Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study[J]. Chin. Phys. Lett., 2011, 28(4): 037302
[6] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 037302
[7] LIU Jian-Lin**, XIA Re, ZHOU Yue-Ting . Stiction of a Nano-Beam with Surface Effect[J]. Chin. Phys. Lett., 2011, 28(11): 037302
[8] WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin, . The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. Chin. Phys. Lett., 2011, 28(11): 037302
[9] GU Fang, ZHANG Jia-Hong**, XU Lin-Hua, LIU Qing-Quan, LI Min . Influence of Surface Effects on the Elastic Properties of Silicon Nanowires with Different Cross Sections[J]. Chin. Phys. Lett., 2011, 28(10): 037302
[10] LI Ji-Ling, YANG Guo-Wei, ZHAO Ming-Wen, LIU Xiang-Dong, XIA Yue-Yuan**. Tuning Bandgap of Si-C Heterofullerene-Based Aanotubes by H Adsorption[J]. Chin. Phys. Lett., 2010, 27(9): 037302
[11] LI Jin, SUN Li-Zhong, ZHONG Jian-Xin. Strain Effects on Electronic Properties of Boron Nitride Nanoribbons[J]. Chin. Phys. Lett., 2010, 27(7): 037302
[12] PAN Li-Jun, CHEN Wei-Guang, ZHANG Rui-Qin, HU Xing, JIA Yu. Influence of High Atomic Hydrogenation on the Electronic Structure of Zigzag Carbon Nanotubes: A First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(7): 037302
[13] XU Yue-Hua, JIA Yong-Lei, ZHOU Jian, DONG Jin-Ming. Infrared Absorption Spectra of Undoped and Doped Few-Layer Graphenes[J]. Chin. Phys. Lett., 2010, 27(5): 037302
[14] GUAN Zhi-Qiang, LUO Gang, MONTELIUS Lars, XU Hong-Xing,. Electromechanical Behavior of Interdigitated SiO2 Cantilever Arrays[J]. Chin. Phys. Lett., 2010, 27(2): 037302
[15] SHAO Jia-Feng, A. G. U. Perera, P. V. V. Jayaweera, HE De-Yan. Low-Cost UV-IR Dual Band Detector Using Nonporous ZnO Film Sensitized by PbS Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(2): 037302
Viewed
Full text


Abstract