Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 034703    DOI: 10.1088/0256-307X/27/3/034703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors
LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei
Department of Mechanics, School of Mechanical Engineering, Tianjin University, Tianjin 300072 State of Key Laboratory of Engines, Tianjin University, Tianjin 300072
Cite this article:   
LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei 2010 Chin. Phys. Lett. 27 034703
Download: PDF(398KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new hysteretic nonlinear model of quad iced bundle conductors is constructed. The bifurcation equation is obtained by applying the undetermined fundamental frequency method of the complex normal form. The transition set and bifurcation diagrams for the singularity are presented. Then the corresponding relations between the unfolding parameters and the system parameters are given, and the sensitivity parameters and its range of values are obtained to analyze and to control the galloping of the quad iced bundle conductor.
Keywords: 47.20.Ky      82.40.Bj      02.30.Hq     
Received: 03 December 2009      Published: 09 March 2010
PACS:  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/034703       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/034703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Fu-Hao
ZHANG Qi-Chang
WANG Wei
[1] Den Hartog J P 1932 Trans. AIEE 51 1074
[2] Simpson A 1965 Proc. IEEE 112 315
[3] Blevins R D and Iwan W D 1974 J. Appl. Mech. 41 1113
[4] Blevins R D 1974 PhD dissertation (Pasadena: California University)
[5] Yu P et al 1993 J. Eng. Math. 119 2426
[6] Yu P, Desai Y M et al 1993 J. Eng. Math. 119 2404
[7] Yu P, Shah A H et al 1992 J. Appl. Mech. 59 140
[8] Yu P, Popplewell et al 1991 J. Appl. Mech. 58 784
[9] Desai Y M, Yu P et al 1995 Comput. Struct. 57 407
[10] Farzaneh M 2008 Atmospheric Icing of Power Networks (London: Springer) P 218
[11] Guo Y L, Li G X and You C Y 2002 Galloping of Transmission Line (Beijing: China Electric Power Press) p 25 (in Chinese)
[12] Ni Y Q, Ko J M, Wong C W and Zhan S 1999 J. Syst. Control Eng. 213 163
[13] Ni Y Q, Ko J M et al 1999 J. Eng. Mech. 125 206
[14] Pisarenko G S 1969 Int. Appl. Mech. 5 182
[15] Bovsunovskii A 1999 Strength Mater. 31 571
[16] Davidenkov N N 1939 J. Tech. Phys. 8 483
[17] Low Y M 2009 Mar. Struct. 22 480
[18] Hasan N A 1983 Method of Normal Forms (New York: Wiley) p 14
[19] Zhang Q C, Wang W and Liu F H 2008 Chin. Phys. B 17 4123
[20] Golubitsky M and Schaeffer D G 1985 Singularities and Groups in Bifurcation Theory (Berlin: Springer) p 459
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 034703
[2] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 034703
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 034703
[4] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 034703
[5] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 034703
[6] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 034703
[7] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 034703
[8] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 034703
[9] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 034703
[10] BAO Chun-Yu, TANG Chao, YIN Xie-Zhen, LU Xi-Yun. Flutter of Finite-Span Flexible Plates in Uniform Flow[J]. Chin. Phys. Lett., 2010, 27(6): 034703
[11] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 034703
[12] R. C. Aziz, I. Hashim** . Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation[J]. Chin. Phys. Lett., 2010, 27(11): 034703
[13] CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye, WANG Wei-Chi. Cytoplasmic Ca2+ Dynamics under the Interplay between the Different IP3R Gating Models and the Plasma Membrane Ca2+ Influx[J]. Chin. Phys. Lett., 2010, 27(1): 034703
[14] MENG Pan, LU Qi-Shao. Dynamical Effect of Calcium Pump on Cytosolic Calcium Bursting Oscillations with IP3 Degradation[J]. Chin. Phys. Lett., 2010, 27(1): 034703
[15] Osama Yusuf Ababneh, Rokiah@Rozita Ahmad. Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems[J]. Chin. Phys. Lett., 2009, 26(8): 034703
Viewed
Full text


Abstract