THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
|
|
|
|
The Casimir Force between Parallel Plates in Randall--Sundrum I Model |
CHENG Hong-Bo |
Department of Physics, East China University of Science and Technology, Shanghai 200237 The Shanghai Key Laboratory of Astrophysics, Shanghai Normal University, Shanghai 200234 |
|
Cite this article: |
CHENG Hong-Bo 2010 Chin. Phys. Lett. 27 031101 |
|
|
Abstract The Casimir effect for parallel plates within the frame of the five-dimensional Randall-Sundrum model with two branes is re-examined. We argue that the nature of Casimir force is repulsive if the distance between the plates is not extremely tiny, which is not consistent with the experimental phenomena, meaning that the Randall-Sundrum I model can not be acceptable. We also point out that the estimation of the separation between the two branes, by means of Casimir effect for two-parallel-plate system, is not feasible, in contrast to another recent study.
|
Keywords:
11.10.Kk
03.70.+k
|
|
Received: 05 September 2009
Published: 09 March 2010
|
|
PACS: |
11.10.Kk
|
(Field theories in dimensions other than four)
|
|
03.70.+k
|
(Theory of quantized fields)
|
|
|
|
|
[1] Kaluza T 1921 Sitz. Preuss. Akad. Wiss. Phys. Math. K1 966 [2] Klein O 1926 Z. Phys. 37 895 [3] Rubakov V A et al 1983 Phys. Lett. B 125 136 [4] Rubakov V A et al 1983 Phys. Lett. B 125 139 [5] Visser M 1985 Phys. Lett. B 159 22 [6] Antoniadis I 1990 Phys. Lett. B 246 317 [7] Arkani-Hamed N et al 1998 Phys. Lett. B 429 263 [8] Antoniadis I et al 1998 Phys. Lett. B 436 257 [9] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 3370 [10] Randall L and Sundrum R 1999 Phys. Rev. Lett. 83 4690 [11] Casimir H B G 1948 Proc. Nederl. Akad. Wetenschap 51 793 [12] Ambjorn J and Wolfram S 1983 Ann. Phys. (N.Y.) 147 1 [13] Elizalde E et al 1994 Zeta Regularization Techniques with Applications (Singapore: World Scientific) [14] Elizalde E 1995 Ten Physical Applications of Spectral Zeta Functions (Berlin: Springer) [15] Bordag M et al 2001 Phys. Rep. 353 1 [16] Milton K A 2001 The Casimir Effect, Physical Manifestation of Zero-Point Energy (Singapore: World Scientific) [17] Mostepanenko V M and Trunov N N 1997 The Casimir Effect and Its Applications (Oxford: Oxford University) [18] Kirsten K 2002 Spectral Function in Mathematics and Physics (London: Chapman and Hall) [19] Li X, Cheng H et al 1997 Phys. Rev. D 56 2155 [20] Brevik I et al 2001 Nucl. Phys. B 599 305 [21] Lamoreaux S K 1997 Phys. Rev. Lett. 78 5 [22] Mohideen U and Roy A 1998 Phys. Rev. Lett. 81 4549 [23] Bressi G et al 2002 Phys. Rev. Lett. 88 041804 [24] Decca R S et al 2003 Phys. Rev. Lett. 91 050402 [25] Alnes H et al 2006 quant-ph/0607081 [26] Alnes H et al 2006 hep-th/0610081 [27] Cheng H 2005 Chin. Phys. Lett. 22 2190 [28] Poppenhaeger K et al 2004 Phys. Lett. B 582 1 [29] Cheng H 2005 Chin. Phys. Lett. 22 3032 [30] Cheng H 2006 Mod. Phys. Lett. A 21 1957 [31] Cheng H 2006 Phys. Lett. B 643 311 [32] Cavalcanti R M 2004 Phys. Rev. D 69 065015 [33] Hertzberg M P et al 2005 Phys. Rev. Lett. 95 250402 [34] Edery A 2007 Phys. Rev. D 75 105012 [35] Edery A et al 2007 J. High Energy Phys. 0709 005 [36] Fulling S A et al 2007 Phys. Rev. D 76 012118 [37] Cheng H 2008 Phys. Lett. B 668 72 [38] Milton K A et al 2001 Mod. Phys. Lett. A 16 2281 [39] Elizalde E 2007 J. Phys. A 40 6647 [40] Greene B R et al 2007 J. High Energy Phys. 0711 096 [41] Fabinger M and Horava P 2000 Nucl. Phys. B 580 243 [42] Saharian A A and Setare M R 2003 Phys. Lett. B 552 119 [43] Cheng H and Li X 2001 Chin. Phys. Lett. 18 1163 [44] Hadasz L et al 2000 Phys. Rev. D 62 025011 [45] Elizalde E et al 2003 Phys. Rev. D 67 063515 [46] Garriga J and Pomarol A 2003 Phys. Lett. B 560 91 [47] Pujolas O 2001 Int. J. Theor. Phys. 40 2131 [48] Flachi A and Toms D J 2001 Nucl. Phys. B 610 144 [49] Goldberger W D et al 2000 Phys. Lett. B 491 339 [50] Frank M et al 2007 Phys. Rev. D 76 015008 [51] Linares R et al 2008 Phys. Rev. D 77 066012 [52] Frank M, Saad N and Turan I 2008 hep-th/0807.0443 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|