Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030508    DOI: 10.1088/0256-307X/27/3/030508
GENERAL |
Chaos Control and Synchronization of Cellular Neural Network with Delays Based on OPNCL Control
TANG Qian, WANG Xing-Yuan
School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024
Cite this article:   
TANG Qian, WANG Xing-Yuan 2010 Chin. Phys. Lett. 27 030508
Download: PDF(367KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The problem of chaos control and complete synchronization of cellular neural network with delays is studied. Based on the open plus nonlinear closed loop (OPNCL) method, the control scheme and synchronization scheme are designed. Both the schemes can achieve the chaos control and complete synchronization of chaotic neural network respectively, and their validity is further verified by numerical simulation experiments.
Keywords: 05.45.Gg      05.45.Xt      05.45.Vx     
Received: 15 September 2009      Published: 09 March 2010
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Vx (Communication using chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030508       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030508
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Qian
WANG Xing-Yuan
[1] Kleinfeld D and Sompolinsky H 1988 Biophys. J. 2 1039
[2] Scott A 1977 Neurophysics (New York: Wiley-Interscience) p 98
[3] Roska T and Chua L 1992 Int. J. Cir. Theor. Appl. 2 469
[4] Liu X Y 2009 Chin. Phys. Lett. 26 090504
[5] Yang T, Cui Y D, Jin Y H and Cheng S D 2009 Chin. Phys. Lett. 26 120502
[6] Guo R W and Uincent U E 2009 Chin. Phys. Lett. 26 090506
[7] Chun W A 2010 Chin. Phys. Lett. 27 010503
[8] Lee T H and Park J H 2009 Chin. Phys. Lett. 26 090507
[9] Al-Sawalha M M and Noorani M S M 2008 Chin. Phys. Lett. 25 2743
[10] Wang X Y and Gao Y 2007 Mod. Phys. Lett. B 21 1999
[11] Hwang C, Chow H and Wang Y 1996 Physica D 92 95
[12] Zlateva P 1996 Concr. Eng. Prac. 4 1023
[13] Wang X Y and Wu X J 2006 Chaos 16 033121
[14] Tian Y and Gao F 1998 Physica D 117 1
[15] Pavlica V and Petrovacki D 1999 Fuzz. Set. Syst. 101 41
[16] Wang X, Chen G and Yu X 2000 Chaos 10 771
[17] Wang F Q and Liu C X 2006 Chin. Phys. 15 1971
[18] Yassen M T 2008 Chaos, Solitons {\rm \& Fractals 37 465
[19] Guan S G, Lai C H and Wei G W 2005 Phys. Rev. E 72 016205
[20] Meng J and Wang X Y 2007 Phys. Lett. A 369 294
[21] Yu W W and Cao J D 2007 Phys. A 375 467
[22] Shahverdiev E M, Sivaprakasam S and Shore K A 2002 Phys. Lett. A 292 320
[23] Wang X Y and He Y J 2008 Phys. Lett. A 372 435
[24] Wang X Y and Meng J 2008 Chaos 18 033102
[25] Meng J and Wang X Y 2007 Chaos 17 023113
[26] Abarbanel H, Rulkov N F and Sushchik M 1996 Phys. Rev. E 53 4528
[27] Hubler A and Luscher E 1989 Nature 76 67
[28] Jackson E A 1990 Phys. Lett. A 151 478
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 030508
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 030508
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030508
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 030508
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 030508
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030508
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 030508
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 030508
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 030508
[10] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 030508
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 030508
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 030508
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 030508
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 030508
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 030508
Viewed
Full text


Abstract