Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030506    DOI: 10.1088/0256-307X/27/3/030506
GENERAL |
Adaptive HChaos Anti-synchronization
Choon Ki Ahn
Faculty of the Division of Electronics and Control Engineering, Wonkwang University, 344-2 Shinyong-dong, Iksan 570-749, Korea
Cite this article:   
Choon Ki Ahn 2010 Chin. Phys. Lett. 27 030506
Download: PDF(537KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new adaptive H anti-synchronization (AHAS) method is proposed for chaotic systems in the presence of unknown parameters and external disturbances. Based on the Lyapunov theory and linear matrix inequality formulation, the AHAS controller with adaptive laws of unknown parameters is derived to not only guarantee adaptive anti-synchronization but also reduce the effect of external disturbances to an H norm constraint. As an application of the proposed AHAS method, the Hanti-synchronization problem for Genesio-Tesi chaotic systems is investigated.
Keywords: 05.45.Gg      05.45.-a     
Received: 25 August 2009      Published: 09 March 2010
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030506       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030506
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Choon Ki Ahn
[1] Pecora L M and Carroll T L 1996 Phys. Rev. Lett. 64 821
[2] Chen G and Dong X 1998 From chaos to order (Singapore: World Scientific)
[3] Kim C M, Rim S, Kye W H, Ryu J W and Park Y J 2003 Phys. Lett. A 320 39
[4] Idowu B A, Vincent U E and Njah A N 2007 J. Math. Control Sci. Appl. 1 191
[5] Vincent U E and Laoye J A 2007 Physica A 384 230
[6] Wang Z 2009 Commun. Nonlin. Sci. Numer. Simulat. 14 2366
[7] Al-sawalha M M and Noorania M S M 2009 Chaos, Solitons and Fractals 42 170
[8] Stoorvogel A 1992 The ${\cal H_\infty$ Control Problem (Upper Saddle River, NJ: Prentice Hall)
[9] Ahn C K 2009 Phys. Lett. A 373 1729
[10] Li S, Xu W and Li R 2007 Phys. Lett. A 361 98
[11] Guo R 2008 Phys. Lett. A 372 5593
[12] Al-sawalha M M and Noorani M S M 2009 Phys. Lett. A 373 2852
[13] Boyd S, Ghaoui L E, Feron E and Balakrishinan V 1994 Linear Matrix Inequalities in Systems and Control Theory (Philadelphia: SIAM)
[14] Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 LMI Control Toolbox (Natick: Mathworks)
[15] Genesio R and Tesi A 1992 Automatica 28 531
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 030506
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030506
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 030506
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 030506
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030506
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 030506
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 030506
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030506
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 030506
Viewed
Full text


Abstract