Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030304    DOI: 10.1088/0256-307X/27/3/030304
GENERAL |
Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature
LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui
College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui 2010 Chin. Phys. Lett. 27 030304
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The transition temperature, the depletion of the condensate atoms and the collective excitations of a Bose-Einstein condensation (BEC) with two- and three-body interactions in an anharmonic trap at finite temperature are studied in detail. By using the Popov version of the Hartree-Fock-Bogoliubov (HFB) approximation, an extended self-consistent model describing BEC with both two- and three-body interactions in a distorted harmonic potential at finite temperature is obtained and solved numerically. The results show that the transition temperature, the condensed atom number and the collective excitations are modified dramatically by the atomic three-body interactions and the distortion of the harmonic trap.
Keywords: 03.75.Kk      05.30.Jp     
Received: 24 September 2009      Published: 09 March 2010
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030304       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hao-Cai
CHEN Hai-Jun
XUE Ju-Kui
[1] Stringari S 1996 Phys. Rev. Lett. 77 2360
[2] Jin D S et al A 1996 Phys. Rev. Lett. 77 420
[3] Mewes M O et al 1996 Phys. Rev. Lett. 77 988
[4] Kocharovsky V V et al 2000 Phys. Rev. Lett. 23 8406
[5] Xiong H W et al 2003 Phys. Rev. A 67 055601
[6] Wang J H and Ma Y L 2009 Phys. Rev. A 79 033604
[7] Zhang W X, Xu Z and You L 2005 Phys. Rev. A 72 053627
[8] Hutchinson D A W et al 1997 Phys. Rev. Lett. 78 1842
[9] Griffin A 1996 Phys. Rev. B 53 9341
[10] Giorgini S et al 1996 Phys. Rev. A 54 R4633
[11] Search C P et al 2002 Phys. Rev. A 65 063616
[12] Bagnato V et al 1987 Phys. Rev. A 35 4354
[13] Gautam S and Angom D cond-mat/0710.4066 v1
[14] Dodd R J et al 1998 Phys. Rev. A 57 R32
[15] Pilati S et al 2008 Phys. Rev. Lett. 100 140405
[16] Zhang C W et al 2004 Phys. Rev. Lett. 93 074101
[17] Yang L et al 2009 Chin. Phy. Lett. 26 076701
[18] Zhang X F et al 2009 Phys. Rev. A 79 033630
[19] Wu Y et al 2001 Phys. Rev. Lett. 86 2200
[20] Bulgac A 2002 Phys. Rev. Lett. 89 050402
[21] Leanhardt A E et al 2002 Phys. Rev. Lett. 89 040401
[22] Zhang W P et al 2003 Phys. Rev. A 68 023605
[23] Akhmediev N et al 1999 Int. J. Mod. Phys. B 13 625
[24] Zhang A X and Xue J K 2007 Phys. Rev. A 75 013624
[25] Li G Q et al 2006 Phys. Rev. A 74 055601
[26] Zezyulin D A et al 2008 Phys. Rev. A 78 013606
[27] Giorgini S 2000 Phys. Rev. A 61 063615
[28] de Groot S R et al 1950 Proc. R. Soc. London A 203 266
[29] Bagnato V et al 1987 Phys. Rev. A 35 4354
[30] Anderson M H et al 1995 Science 269 198
[31] Dobson J F 1994 Phys. Rev. Lett. 73 2244
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 030304
[2] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 030304
[3] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 030304
[4] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 030304
[5] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 030304
[6] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 030304
[7] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 030304
[8] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 030304
[9] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 030304
[10] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 030304
[11] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 030304
[12] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 030304
[13] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 030304
[14] LUO Xiao-Bing, XIA Xiu-Wen, ZHANG Xiao-Fei,. Suppression of Chaos in a Bose-Einstein Condensate Loaded into a Moving Optical Superlattice Potential[J]. Chin. Phys. Lett., 2010, 27(4): 030304
[15] MA Zhong-Qi, C. N. Yang,. Spinless Bosons in a 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction II: Numerical Solutions[J]. Chin. Phys. Lett., 2010, 27(2): 030304
Viewed
Full text


Abstract