Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030301    DOI: 10.1088/0256-307X/27/3/030301
GENERAL |
Entanglement Purification for Mixed Entangled Quantum Dot States via Superconducing Transmission Line Resonators
DONG Ping1,3, ZHANG Gang2, CAO Zhuo-Liang1
1Department of Physics and Electronic Engineering, Hefei Normal University, Hefei 230061 2Department of Mathematics and Physics, West Anhui University, Lu'an 237012 3Key Laboratory of Opto-electronic Information Acquisition and Manipulation (Ministry of Education), Anhui University, Hefei 230039
Cite this article:   
DONG Ping, ZHANG Gang, CAO Zhuo-Liang 2010 Chin. Phys. Lett. 27 030301
Download: PDF(329KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An entanglement purification protocol for mixed entangled states is presented via double quantum dot molecules inside a superconducing transmission line resonator (TLR). In the current scenario, coupling for arbitrary double quantum dot molecules can be tuned via the TLR in the large detuning region by controlling the qubit level splitting. The TLR is always empty and only virtually excited, so the interaction is insensitive to both the TLR decay and thermal field. Discussion about the feasibility of our scheme shows that the entanglement purification can be implemented with high fidelity and successful probability.
Keywords: 03.67.-a      03.65.Ud      68.65.Hb     
Received: 09 October 2009      Published: 09 March 2010
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030301       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DONG Ping
ZHANG Gang
CAO Zhuo-Liang
[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[3] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[4] Bennett C H, DiVincenzo D P, Smolin J A and Wootters W K 1996 Phys. Rev. A 54 3824
[5] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[6] Pan J W, Simon C, Brukner \v{C and Zeilinger A 2001 Nature 410 1067
[7] Pan J W, Gasparoni S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[8] Alber G, Delgado A, Gisin N and Jex I 2001 J. Phys. A 34 8821
[9] Bombin H and Martin-Delgado M A 2005 Phys. Rev. A 72 032313
[10] Yang M, Song W and Cao Z L 2005 Phys. Rev. A 71 012308
[11] D\"{ur W, Aschauer H and Briegel H J 2003 Phys. Rev. Lett. 91 107903
[12] Aschauer H, D\"{ur W and Briegel H J 2005 Phys. Rev. A 71 012319
[13] Kay A, Pachos J K, D\"{ur W and Briegel H J 2006 New J. Phys. 8 147
[14] Goyal K, McCauley A and Raussendorf R 2006 Phys. Rev. A 74 032318
[15] Kruszynska C, Miyake A, Briegel H J and D\"{ur W 2006 Phys. Rev. A 74 052316
[16] Yang M, Delgadoa A, Roaa L and Saavedraa C 2009 Opt. Commun. 282 1482
[17] Yang M, Yan F and Cao Z L quant-ph/0904.2343
[18] Song X G and Feng X L 2005 Chin. Phys. Lett. 22 15
[19] Zheng Y Z, Ye P and Guo G C 2004 Chin. Phys. Lett. 21 9
[20] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[21] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[22] Liu Y X, Miranowicz A, Koashi M and Imoto N 2002 Phys. Rev. A 66 062309
[23] Liu Y X, demir S K, Koashi M and Imoto N 2002 Phys. Rev. A 65 042326
[24] Yuan C H, Zhu K D and Yuan X Z 2007 Phys. Rev. A 75 062309
[25] Dong P and Cao Z L 2007 J. Phys.: Condens. Matter 19 376216
[26] Dong P and Cao Z L 2009 Phys. Lett. A 373 1527
[27] Guo G P, Zhang H, Hu Y, Tu T and Guo G C 2008 Phys. Rev. A 78 020302(R)
[28] Lin Z R, Guo G P, Tu T, Zhu F Y and Guo G C 2008 Phys. Rev. Lett. 101 230501
[29] Zheng S B 2002 Phys. Rev. A 66 060303(R)
[30] Zhu S L, Wang Z D and Zanardi P 2005 Phys. Rev. Lett. 94 100502
[31] Xue Z Y and Wang Z D 2007 Phys. Rev. A 75 064303
[32] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S and Schoelkopf R J 2004 Nature (London) 431 162
[33] Khaetskii A V and Nazarov Y V 2000 Phys. Rev. B 61 12639
[34] Khaetskii A V and Nazarov Y V 2001 Phys. Rev. B 64 125316
[35] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H 2002 Science 296 886
[36] Ithier G, Collin E, Joyez P, Meeson P J, Vion D, Esteve D, Chiarello F, Shnirman A, Makhlin Y, Schriefl J and Schon G 2005 Phys. Rev. B 72 134519
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 030301
[2] LIU Kui, CUI Shu-Zhen, YANG Rong-Guo, ZHANG Jun-Xiang, GAO Jiang-Rui. Experimental Generation of Multimode Squeezing in an Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(6): 030301
[3] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 030301
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 030301
[5] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 030301
[6] QIAN Yi,XU Jing-Bo**. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field[J]. Chin. Phys. Lett., 2012, 29(4): 030301
[7] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 030301
[8] Arpita Maitra, Santanu Sarkar. On Universality of Quantum Fourier Transform[J]. Chin. Phys. Lett., 2012, 29(3): 030301
[9] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030301
[10] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model[J]. Chin. Phys. Lett., 2012, 29(3): 030301
[11] M. Ramzan. Decoherence and Multipartite Entanglement of Non-Inertial Observers[J]. Chin. Phys. Lett., 2012, 29(2): 030301
[12] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 030301
[13] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 030301
[14] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 030301
[15] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 030301
Viewed
Full text


Abstract