CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Effects of End Termination on Electronic Transport in a Molecular Switch |
ZHAO Peng, ZHANG Zhong, WANG Pei-Ji, ZHANG Hai-Kui, REN Miao-Juan, LI Feng |
School of Science, University of Jinan, Jinan 250022 |
|
Cite this article: |
ZHAO Peng, ZHANG Zhong, WANG Pei-Ji et al 2010 Chin. Phys. Lett. 27 027304 |
|
|
Abstract Based on the non-equilibrium Green's function formalism and first-principles calculations, we investigate the electronic transport properties of an anthracene-based molecular switch with two carbon nanotube electrodes. Our results show that different terminations at the carbon nanotube end strongly affect the transport properties of the switch. In the case of H-termination the current at low biases is dominated by non-resonant tunneling. In the N-termination case the current at low biases is dominated by quasi-resonant tunneling and is increased by several orders of magnitude. The enhancement is discussed by the molecular projected self-consistent Hamiltonian level, transmission function, and local density of states.
|
Keywords:
73.23.-b
85.65.+h
|
|
Received: 03 September 2009
Published: 08 February 2010
|
|
PACS: |
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
|
|
|
[1] Joachim C, Gimzewski J K and Aviram A 2000 Nature 408 541 [2] Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 Science 278 252 [3] Nazin G V, Qiu X H and Ho W A T and Fukamichi K 2003 Science 302 77 [4] Pasupathy A N, Bialczak R C, Martinek J, Grose J E, Donev L A K, McEuen P L and Ralph D C 2004 Science 306 86 [5] Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E and Krause J L 2004 Phys. Rev. Lett. 92 158301 [6] Zhao P, Fang C F, Xia C J, Wang Y M, Liu D S and Xie S J 2008 Appl. Phys. Lett. 93 013113 [7] Zhao P, Fang C F, Xia C J, Liu D S and Xie S J 2008 Chem. Phys. Lett. 453 62 [8] Ramachandran G K, Hopson T J, Rawlett A M, Nagahara L A, Primak A and Lindsay S M 2003 Science 300 1413 [9] Zhao P, Wang P J, Zhang Z, Fang C F, Wang Y M, Zhai Y X and Liu D S 2009 Solid State Commun. 149 928 [10] OuYang F P and Xu H 2007 Chin. Phys. Lett. 24 1042 [11] Xu Y, Zhang G and Li B W 2008 J. Phys. Chem. B 112 16891 [12] Iijima S 1991 Nature 354 56 [13] Esfarjani K, Farajian A A, Hashi Y and Kawazoe Y 1999 Appl. Phys. Lett. 74 79 [14] Berber S, Kwon Y K and Tom\'{anek D 2000 Phys. Rev. Lett. 84 4613 [15] Guo T, Jin C M and Smalley R E 1995 Chem. Phys. Lett. 243 49 [16] Wong S S, Joselevich E, Woolley A T, Cheung C L and Lieber C M 1998 Nature 394 52 [17] Majumder M, Chopra N and Hinds B J 2005 J. Am. Chem. Soc. 127 9062 [18] Sumpter B G, Meunier V, Romo-Herrera J M, Cruz-Silva E, Cullen D A, Terrones H, Smith D J and Terrones M 2007 ACS nano 1 369 [19] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P and Portal D S 2002 J. Phys: Condens. Matter 14 2745 [20] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [21] Perdew J and Zunger A 1981 Phys. Rev. B 23 5048 [22] Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407 [23] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401 [24] Troullier N and Martins J 1991 Phys. Rev. B 43 1993 [25] Landauer R 1970 Philos. Mag. 21 863 [26] Stokbro K, Taylor J, Brandbyge M, Mozos J L and Ordejon P 2003 Comput. Mater. Sci. 27 151
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|