Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 024708    DOI: 10.1088/0256-307X/27/2/024708
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow
LUO Jian-Ping 1,3, LU Zhi-Ming2, USHIJIMA Tatsuo3, KITOH Osami3, LIU Yu-Lu1,2
1Shanghai Institute of Technology, Shanghai 2002352Shanghai Institute of Applied Mathematics and Mechanics, ShanghaiUniversity, Shanghai 2000723Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
Cite this article:   
LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo et al  2010 Chin. Phys. Lett. 27 024708
Download: PDF(456KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Lagrangian structure function's scaling exponents and intermittency of three-dimensional incompressible turbulent channel flow are investigated by using direct numerical simulation. The intermittency in streamwise velocity increments is found to increase in the near-wall region, which can be attributed to the presence of strong mean shear and organized motions in the near-wall region. It is found that the intermittency of transverse velocity increments is weaker than that of longitudinal ones. The present ESS evaluation of ζL(q) for the structure function of the streamwise velocity component in the channel centre is fairly close to experimental estimates of isotropic turbulence.
Keywords: 47.60.-i      47.27.-i      47.27.Ek      47.27.Nd     
Received: 24 November 2009      Published: 08 February 2010
PACS:  47.60.-i (Flow phenomena in quasi-one-dimensional systems)  
  47.27.-i (Turbulent flows)  
  47.27.ek (Direct numerical simulations)  
  47.27.nd (Channel flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/024708       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/024708
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Jian-Ping
LU Zhi-Ming
USHIJIMA Tatsuo
KITOH Osami
LIU Yu-Lu
[1] Frisch U 1995 Turbulence (Cambridge: Cambridge University)
[2] Kolmogorov A N 1941 Dokl. Akad. Nauk. SSSR 30 301
[3] Novikov E A 1989 Phys. Fluids A 1 326
[4] La Porta A, Voth G A, Crawford A M, Alexander J and Bodenschatz E 2001 Nature 409 1017
[5] Yeung P K 2002 Ann. Rev. Fluid Mech. 34 115
[6] Biferale L, Boffetta G, Celani A, Lanotte A and Toschi F 2005 Phys. Fluids 17 021701
[7] Landau L D and Lifshitz E M 1987 Fluid Mechanics 2nd edn (Oxford: Butterworth-Heinemann)
[8] Schmitt F G 2006 Physica A 368 377
[9] Luo J P, Ushijima T, Kitoh O, Lu Z M, Liu Y L and Schmitt F G 2006 Z. Naturforsch 61a 624
[10] Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F and Succi S 1993 Phys. Rev. E 48 R29
[11] Arneodo A, Baudet C and Belin F et al 1996 Europhys. Lett. 34 411
[12] Antonia R A and Pearson B R 1997 Europhys. Lett. 40 123
[13] Van De Water W and Herweijer J A 1999 J. Fluid Mech. 387 3
[14] Mordant N, L{\'{ev\^{eque E and Pinton J F 2004 New J. Phys. 6 116
[15] Luo J P, Ushijima T, Kitoh O, Lu Z M and Liu Y L 2007 Int. J. Heat Fluid Flow 28 871
[16] Luo J P, Ushijima T and Kitoh O 2006 Chin. Phys. Lett. 23 883
[17] Antonia R A, Oriandi P and Romano G P 1998 Phys. Fluids 10 3239
[18] Amati G, Succi S and Piva R 1999 Fluid Dynamics Res. 24 201
[19] Hu K H and Chen K 2005 Chin. Phys. Lett. 22 3115
Related articles from Frontiers Journals
[1] YANG Wei, ZHOU Kun. A New Method of Simulating Fiber Suspensions and Applications to Channel Flows[J]. Chin. Phys. Lett., 2012, 29(6): 024708
[2] YANG Zi-Xuan,CUI Gui-Xiang**,XU Chun-Xiao,ZHANG Zhao-Shun,SHAO Liang. Correlation between Temperature and Velocity Fluctuations in the Near-Wall Region of Rotating Turbulent Channel Flow[J]. Chin. Phys. Lett., 2012, 29(5): 024708
[3] Mithilesh Singh**, L. P. Singh, Akmal Husain . Landau–Stanyukovich Rule and the Similarity Parameter of Converging Shock Waves in Magnetogasdynamics[J]. Chin. Phys. Lett., 2011, 28(9): 024708
[4] ZHANG Hui-Qiang, LU Hao, WANG Bing**, WANG Xi-Lin . Experimental Investigation of Flow Drag and Turbulence Intensity of a Channel Flow with Rough Walls[J]. Chin. Phys. Lett., 2011, 28(8): 024708
[5] T. Hayat, **, S. Hina, Awatif A. Hendi . Peristaltic Motion of Power-Law Fluid with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(8): 024708
[6] WANG Li, LU Xi-Yun** . The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers[J]. Chin. Phys. Lett., 2011, 28(6): 024708
[7] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 024708
[8] MI Jian-Chun, R. A. Antonia. Key Factors in Determining the Magnitude of Vorticity in Turbulent Plane Wakes[J]. Chin. Phys. Lett., 2010, 27(2): 024708
[9] L. P. Singh, Akmal Husain, M. Singh. An Approximate Analytical Solution of Imploding Strong Shocks in a Non-Ideal Gas through Lie Group Analysis[J]. Chin. Phys. Lett., 2010, 27(1): 024708
[10] LI Xin-Liang, FU De-Xun, MA Yan-Wen, GAO Hui. Acoustic Calculation for Supersonic Turbulent Boundary Layer Flow[J]. Chin. Phys. Lett., 2009, 26(9): 024708
[11] JIANG Mi, MA Ping. Vortex Turbulence due to the Interplay of Filament Tension and Rotational Anisotropy[J]. Chin. Phys. Lett., 2009, 26(7): 024708
[12] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 024708
[13] CAO Yu-Hui, PEI Jie, CHEN Jun, SHE Zhen-Su,. Compressibility Effects in Turbulent Boundary Layers[J]. Chin. Phys. Lett., 2008, 25(9): 024708
[14] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 024708
[15] FENG Shi-De, DONG Ping, ZHONG Lin-Hao. A Conceptual Model of Somali Jet Based on the Biot--Savart Law[J]. Chin. Phys. Lett., 2008, 25(12): 024708
Viewed
Full text


Abstract