Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 024707    DOI: 10.1088/0256-307X/27/2/024707
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane
ZHAO Si-Cheng1, LIU Qiu-Sheng1, NGUYEN-THI Henri2, BILLIA Bernard2
1Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 1001902IM2NP, UMR CNRS 6137, Université d'Aix-Marseille III, 13397 Marseille Cedex 20, France
Cite this article:   
ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri et al  2010 Chin. Phys. Lett. 27 024707
Download: PDF(377KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A three-dimensional linear instability analysis of thermocapillary convection in a fluid-porous double layer system, imposed by a horizontal temperature gradient, is performed. The basic motion of fluid is the surface-tension-driven return flow, and the movement of fluid in the porous layer is governed by Darcy's law. The slippery effect of velocity at the fluid-porous interface has been taken into account, and the influence of this velocity slippage on the instability characteristic of the system is emphasized. The new behavior of the thermocapillary convection instability has been found and discussed through the figures of the spectrum.
Keywords: 47.20.Dr      47.55.Dm      47.56.+r     
Received: 25 September 2009      Published: 08 February 2010
PACS:  47.20.Dr (Surface-tension-driven instability)  
  47.55.dm (Thermocapillary effects)  
  47.56.+r (Flows through porous media)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/024707       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/024707
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Si-Cheng
LIU Qiu-Sheng
NGUYEN-THI Henri
BILLIA Bernard
[1] Pearson J R A 1958 J. Fluid Mech. 4 489
[2] Smith M K and Davis S H 1983 J. Fluid Mech. 132 119
[3] Sen A K and Davis S H 1982 J. Fluid Mech. 121 163
[4] Liu Q S, Chen G and Roux B 1993 Int. J. Heat Mass Transfer 36 101
[5] Liu Q S, Roux B and Velarde M G 1998 Int. J. Heat Mass Transfer 41 1499
[6] Chen F and Chen C F 1988 J. Heat Transfer 110 403
[7] Rayleigh, L. 1916 Phil. Mag. 32(6) 529
[8] Straughan B 2001 J. Computat. Phys. 170 320
[9] Chang M H 2005 Phys. Fluids 17 064106
[10] Chang M H 2006 Phys. Fluids 18 035104
[11] Colinet P, Legros J C and Velarde M G 2001 Nonlinear Dynamics of Surface-Tension-Driven Instabilities (Berlin: Wiley-VCH Verlag)
[12] Nield D A and Bejan A 1998 Convection in Porous Media 2nd end (New York: Springer)
[13] Beavers G S and Joseph D D 1967 J. Fluid Mech. 20 197
[14] Desaive Th and Lebon G 2001 Phys. Rev. E 64 066304
[15] Pascal J P 1999 J. Phys. D: Appl. Phys. 32 417
[16] Mohammed Rizwan Sadiq I and Usha R 2008 Phys. Fluids 20 022105
[17] Chang M H, Chen F and Straughan B 2006 J. Fluid Mech. 564 287
[18] Orszag S A 1971 J. Fluid Mech. 50 689
[19] Zhao S C, Liu R and Liu Q S 2008 Chin. Phys. Lett. 25 620
Related articles from Frontiers Journals
[1] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 024707
[2] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 024707
[3] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 024707
[4] ZHAO Si-Cheng, LIU Qiu-Sheng**, NGUYEN-THI Henri, BILLIA Bernard . Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2011, 28(2): 024707
[5] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 024707
[6] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 024707
[7] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 024707
[8] WU Jing-Chun, QIN Sheng-Gao, WANG Yang. Derivation of the Convective Dispersion Equation with Adsorption by Markov Random Ways[J]. Chin. Phys. Lett., 2009, 26(8): 024707
[9] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 024707
[10] LI Lu-Jun, DUAN Li, HU Liang, KANG Qi. Experimental Investigation of Influence of Interfacial Tension on Convection of Two-Layer Immiscible Liquid[J]. Chin. Phys. Lett., 2008, 25(5): 024707
[11] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 024707
[12] ZENG Li, ZUO Guang-Hong, GONG Xiao-Jing, LU Hang-Jun, WANGChun-Lei, WU Ke-Fei, WAN Rong-Zheng,. Water and Ion Permeation through Electrically Charged Nanopore[J]. Chin. Phys. Lett., 2008, 25(4): 024707
[13] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 024707
[14] TU Tao, HAO Xiao-Jie, GUO Guo-Ping, GUO Guang-Can. Two-Time Diffusion Process in the Porous Medium[J]. Chin. Phys. Lett., 2007, 24(8): 024707
[15] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 024707
Viewed
Full text


Abstract