Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 024705    DOI: 10.1088/0256-307X/27/2/024705
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Fractal Analysis of Surface Roughness of Particles in Porous Media
CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei
School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing et al  2010 Chin. Phys. Lett. 27 024705
Download: PDF(406KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A fractal dimension for roughness height (RH) is introduced to characterize the degree of roughness or disorder of particle surface characters which significantly influence physical-chimerical processes in porous media. An analytical expression for the fractal dimension of RH on statistically self-similar fractal surfaces is derived and is expressed as a function of roughness parameters. The specific surface area (SSA) of porous materials with spherical particles is also derived, and the proposed fractal model for the SSA of particles with rough surfaces is expressed as a function of fractal dimension for RH and fractal dimension for particle size distribution, relative roughness of particle surface, and ratio of the minimum to the maximum particle diameters of spherical particles.
Keywords: 47.56.+r      47.15.-x      05.45.Df     
Received: 08 September 2009      Published: 08 February 2010
PACS:  47.56.+r (Flows through porous media)  
  47.15.-x (Laminar flows)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/024705       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/024705
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jian-Chao
YU Bo-Ming
ZOU Ming-Qing
MEI Mao-Fei
[1] Eynard A et al 2004 Soil. Sci. Soc. Am. J. 68 1927
[2] Zeng L et al 2009 Chin. Phys. Lett. 26 038701
[3] Yu B M, Cai J C and Zou M Q 2009 Vadose Zone J. 8 177
[4] Koponen A, Kataja M and Timonen J 1997 Phys. Rev. E 56 3319
[5] Yu B M and Li J H 2001 Fractals 9 365
[6] Feng Y J and Yu B M 2007 Fractals 15 385
[7] Yu B M 2005 Chin. Phys. Lett. 22 158
[8] Yu B M and Li J H 2004 Chin. Phys. Lett. 21 1569
[9] Wu J S, Yin S X and Zhao D Y 2009 Chin. Phys. Lett. 26 064701
[10] Wei Q and Wang D 2003 Mater. Lett. 57 2015
[11] Avnir D and Pfeifer P 1983 Nouveau J. de Chemie 7 71
[12] Cao Q S, Peng G W and Tian D C 1991 Chin. Phys. Lett. 8 218
[13] Guo L X and Wu Z S 2001 Chin. Phys. Lett. 18 42
[14] Wang Y et al 2007 Colloids Surf. A 307 16
[15] Nayak P R 1971 ASME J. Lubrication Technol. 93 398
[16] Majumdar A and Bhushan B 1990 ASME J. Tribology 112 205
[17] Yu B M and Cheng P 2002 Int. J. Heat Mass Transfer 45 2983
[18] Brunauer S, Emmett P H and Teller E 1938 J. Am. Chem. Soc. 60 309
[19] Acharya R C, van der Zee S E A T M and Leijnse A 2004 Adv. Water Resour. 27 707
[20] Mahovic Poljacek S et al 2008 App. Sur. Sci. 254 3449
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 024705
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 024705
[3] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 024705
[4] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 024705
[5] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 024705
[6] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 024705
[7] ZHAO Si-Cheng, LIU Qiu-Sheng**, NGUYEN-THI Henri, BILLIA Bernard . Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2011, 28(2): 024705
[8] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 024705
[9] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 024705
[10] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 024705
[11] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 024705
[12] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 024705
[13] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 024705
[14] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 024705
[15] ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri, BILLIA Bernard. Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane[J]. Chin. Phys. Lett., 2010, 27(2): 024705
Viewed
Full text


Abstract