Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 023201    DOI: 10.1088/0256-307X/27/2/023201
ATOMIC AND MOLECULAR PHYSICS |
Dynamics of a Rydberg Hydrogen Atom in a Generalized van der Waals Potential and a Magnetic Field
WANG De-Hua
College of Physics, Ludong University, Yantai 264025
Cite this article:   
WANG De-Hua 2010 Chin. Phys. Lett. 27 023201
Download: PDF(5386KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The classical dynamics of a Rydberg hydrogen atom in a generalized van der Waals potential plus a magnetic field is investigated by using the Poincaré surface of section and phase space trajectories method. The dynamical character of this system depends sensitively on the magnetic field strength. The numerical calculations show that for a certain van der Waals potential, its classical dynamics is regular without the external magnetic field. However, with the addition of the external magnetic field, the dynamical property of the Rydberg hydrogen atom begins to change. With the increase of the magnetic field strength, order-chaos-order-chaos types of transition regions are observed for the hydrogen atom. As the magnetic field strength is very large, nearly all the phase space trajectories are chaotic. Under this condition, only chaotic motion appears. This is caused by the diamagnetic Zeeman effect. Our study provides a different perspective on the dynamical behavior of the Rydberg atom in the van der Waals potential and magnetic field.
Keywords: 32.60.+      03.65.-w      05.45.-a     
Received: 21 September 2009      Published: 08 February 2010
PACS:  32.60.+  
  03.65.-w (Quantum mechanics)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/023201       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/023201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG De-Hua
[1] Koch P M et al 1995 Phys. Rep. 255 290
[2] Wang D H et al 2009 Chin. Phys. Lett. 26 093201
[3] Du M L and Delos J B 1988 Phys. Rev. A 38 1896
[4] H\"upper B et al 1996 Phys. Rev. A 53 744
[5] Simonovic N S 1997 J. Phys. B: At. Mol Opt. Phys. 30 L613
[6] Ganesan K and Taylor K T 1996 J. Phys. B: At. Mol. Opt. Phys. 29 1293
[7] Salas J P and Simonovic N S 2000 J. Phys. B: At. Mol. Opt. Phys. 33 291
[8] Wang D H, Du M L and Lin S L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 3529
[9] I\~{narrea M et al 2007 Phys. Rev. A 76 052903
[10] Landragin A et al 1996 Phys. Rev. Lett. 77 146
[11]Alhassid Y et al 1987 Phys. Rev. Lett. 59 1545
[12] Ganesan K and Lakshmanan M 1990 Phys. Rev. A 42 3940
[13]Farrelly D and Howard J E 1993 Phys. Rev. A 48 851
[14] I\~{narrea M and Salas J P 2002 Phys. Rev. E 66 056614
[15] Beims M W and Gallas J A C 2000 Phys. Rev. A 62 043410
[16] Dando P A et al 1996 Phys. Rev. A 54 127
[17]Ablowitz M J et al 1980 J. Math. Phys. 21 715
[18] Friedrich H and Wintgen D 1989 Phys. Rep. 183 37
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 023201
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 023201
[3] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 023201
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 023201
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 023201
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 023201
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 023201
[8] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 023201
[9] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 023201
[10] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 023201
[11] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 023201
[12] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 023201
[13] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 023201
[14] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 023201
[15] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 023201
Viewed
Full text


Abstract