Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 020504    DOI: 10.1088/0256-307X/27/2/020504
GENERAL |
Analysis of Chaotic Dynamics in a Two-Dimensional Sine Square Map
XU Jie1, LONG Ke-Ping1, FOURNIER-PRUNARET Dani`ele2, TAHA Abdel-Kaddous2, CHARGE Pascal2
1School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 6117312LATTIS, INSA, Toulouse University, 135 avenue de Rangueil 31077 Toulouse 4, France
Cite this article:   
XU Jie, LONG Ke-Ping, FOURNIER-PRUNARET Dani`ele et al  2010 Chin. Phys. Lett. 27 020504
Download: PDF(1553KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study an N-dimensional system based upon a sine map, which is related to the simplified model of an opto-electronic system. The system behavior is analyzed with the tools of nonlinear dynamics (bifurcations in the parameter plane, critical manifolds, basins of attraction, chaotic attractors). Our study relies on a two-dimensional system (N=2). It is interesting that this system shows the existence of bounded chaotic orbits, which can be considered for secure transmissions.

Keywords: 05.45.Ac      05.45.Gg      05.45.Pq     
Received: 06 November 2009      Published: 08 February 2010
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/020504       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/020504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Jie
LONG Ke-Ping
FOURNIER-PRUNARET Dani`ele
TAHA Abdel-Kaddous
CHARGE Pascal
[1] Larger L and Fournier-Prunaret D 2005 European Conference on Circuit Theory and Design (Cork, Ireland 28 August--2 September 2005) I$\!$I p 161
[2] Larger L, Genin E, Udaltsov V S and Poinsot S 2005 J. Opt. Technol. 72 29
[3] Bischi G I, Mamman C and Gardini L 2000 Chaos, Solitons \& Fractals 11 543
[4] Xu J 2006 Congr\`es des Doctorants EDSYS (Tarbes, France 11 May 2006) p 35
[5] Charg\'e P, Xu J, Fournier-Prunaret D and Taha A K 2007 15th IEEE International Workshop on Nonlinear Dynamics of Electronic Systems (Tokushima, Japan 23--26 July 2007) p 141
[6] Mira C 1987 Chaotic Dynamics (Singapore: World Scientific) chap 1 p 59
[7] Carcass\`es J P 1993 Int. J. Bif. Chaos 3 869
[8] Mira C, Gardini L, Barugola A and Cathala J C 1996 World Scientific Series A 20 636
[9] Canovas J 2001 Chaos, Solitons \& Fractals 12 1259
[10] Mira C, Fournier-Prunaret D, Gardini L, Kawakami H and Cathala J C 1994 Int. J. Bifur. Chaos Appl. Sci. Engin. 4 343
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 020504
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020504
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 020504
[5] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 020504
[6] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 020504
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 020504
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 020504
[9] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 020504
[10] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 020504
[11] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 020504
[12] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 020504
[13] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 020504
[14] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 020504
[15] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 020504
Viewed
Full text


Abstract