Chin. Phys. Lett.  2010, Vol. 27 Issue (2): 020502    DOI: 10.1088/0256-307X/27/2/020502
GENERAL |
Synchronization Control of Two Different Chaotic Systems with Known and Unknown Parameters
GUAN Jun-Biao
School of Science, Hangzhou Dianzi University, Hangzhou 310018
Cite this article:   
GUAN Jun-Biao 2010 Chin. Phys. Lett. 27 020502
Download: PDF(507KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chaos synchronization of two different chaotic systems with known and unknown parameters is studied. Based on the Lyapunov stability theory, two different chaotic systems with known parameters realize global synchronization via the successfully designed nonlinear controller. By employing an adaptive synchronization scheme, the synchronization of two different chaotic systems with unknown parameters is achieved. Numerical simulations validate the effectiveness of the theoretical analysis.
Keywords: 05.45.Xt      05.45.Gg      87.19.Lr     
Received: 18 August 2009      Published: 08 February 2010
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Gg (Control of chaos, applications of chaos)  
  87.19.lr (Control theory and feedback)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/2/020502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I2/020502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUAN Jun-Biao
[1] Yang L, Zhang X, Wang A, Guo D and Wang Y 2008 Chin. Phys. Lett. 25 3883
[2] Ma J, Wang Q, Jin W and Xia Y 2008 Chin. Phys. Lett. 25 3582
[3] Pyragas K 1992 Phys. Lett. A 170 421
[4] Xiao J and Yi Y 2007 Chaos, Solitons {\rm\& Fractals 33 908
[5] Wu X, Guan Z, Wu Z and Li T 2007 Phys. Lett. A 364 484
[6] Kilic R, Alci M and G\"{unay E 2004 Int. J. Bifur. Chaos 9 3277
[7] Chen H, Sheu G, Lin Y and Chen C 2009 Nonl. Anal. 70 4393
[8] Li G 2007 Chaos, Solitons {\rm\& Fractals 32 1454
[9] Sun X and Lu Q 2009 Chin. Phys. Lett. 26 060507
[10] Liu C, Liu T, Liu L and Liu K 2004 Chaos Solitons {\rm\& Fractals 22 1031
[11] Liu C 2009 Chaos Solitons {\rm\& Fractals 39 1037
[12] Li J 2008 Chin. Phys. Lett. 25 413
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 020502
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 020502
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 020502
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 020502
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 020502
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 020502
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 020502
[9] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 020502
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 020502
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 020502
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 020502
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 020502
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 020502
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 020502
Viewed
Full text


Abstract