CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Excellent Magnetocaloric Effect in Er60Al18Co22 Bulk Metallic Glass |
HUI Xi-Dong**, XU Zhi-Yi, WANG En-Rui, CHEN Guo-Liang, LU Zhao-Ping |
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083
|
|
Cite this article: |
HUI Xi-Dong, XU Zhi-Yi, WANG En-Rui et al 2010 Chin. Phys. Lett. 27 117502 |
|
|
Abstract Excellent magnetocaloric effect with a maximum entropy change and refrigeration capacity of 17.6 J⋅kg−1⋅K−1 and 546 J⋅kg−1, respectively, has been discovered in the Er60Al18Co22 bulk metallic glass under the field of 50 kOe in the temperature range of helium liquefaction. This MCE results from the second-order magnetic transition from the paramagnetic to the ferromagnetic state. Our analysis based on mean-field theory suggests that the excellent MCE is attributed to the strong exchange of magnetic moment in the glassy structure.
|
Keywords:
75.30.Sg
75.20.En
75.40.Cx
75.50.Cc
|
|
Received: 29 May 2010
Published: 22 October 2010
|
|
PACS: |
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.20.En
|
(Metals and alloys)
|
|
75.40.Cx
|
(Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))
|
|
75.50.Cc
|
(Other ferromagnetic metals and alloys)
|
|
|
|
|
[1] Zimm C, Jastrab A, Sternberg A, Pecharsky V K, Gschneidner Jr K A, Osborne M and Anderson I 1998 Adv. Cryog. Eng. 43 1759
[2] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
[3] Choe W, Pecharsky V K, Pecharsky A O, Gschneidner K A Jr, Young V G Jr and Miller G J 2000 Phys. Rev. Lett. 84 4617
[4] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853
[5] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[6] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[7] Fujieda S, Fujita A and Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[8] Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and Its Applications (Bristol: IOP Publishing Ltd.)
[9] Mohn P 2006 Magnetism in the Solid State (Berlin: Springer)
[10] Du J, Zheng Q, Li Y B, Zhang Q, Li D and Zhang Z D 2008 J. Appl. Phy. 103 023918
[11] Shen T D, Schwarz R B, Coulter J Y and Thompson J D 2002 J. Appl. Phys. 91 5240
[12] Franco V, Blazquez J S and Conde A 2006 J. Appl. Phys. 100 064307
[13] Franco V, Borrego J M, Conde A and Roth S 2006 Appl. Phys. Lett. 88 132509
[14] Atalay A, Gencer H and Kolat V S 2005 J. Non-Cryst. Solids. 351 2373
[15] Liang L, Hui X, Zhang C M, Lu Z P and Chen G L 2008 Solid State Commun. 146 49
[16] Liang L, Hui X and Chen G L 2008 Mater. Sci. Eng. B 147 13
[17] Liang L, Hui X, Zhang C M and Chen G L 2008 Intermetallics 16 198
[18] Luo Q, Zhao D Q, Pan M X and Wang W H 2006 Appl. Phys. Lett. 89 081914
[19] Luo Q, Zhao D Q, Pan M X and Wang W H 2007 Appl. Phys. Lett. 90 211903
[20] Morrish A H 2001 The Physical Principles of Magnetism (New York: Wiley & Sons. Inc.)
[21] Landau L D and Lifshitz E M 1958 Statistical Physics (New York: Pergamon)
[22] Liu X B and Altounian Z 2005 J. Magn. Magn. Mater. 292 83
[23] Ruderman M A and Kittel C 1954 Phys. Rev. 96 99
[24] Kasuya T 1956 Prog. Theor. Phys. 16 45
[25] Yosida K 1957 Phys. Rev. 106 893
[26] Taylor K N R 1971 Advan. Phys. 20 551
[27] Földeaki M, Chahine R and Bose T K 1995 J. Appl. Phys. 77 3528
[28] Gangulee A and Kobliska R J 1978 J. Appl. Phys. 49 4896
[29] Mansuripur M and Ruane M F 1986 IEEE Trans. Magn. 22 33
[30] Liu X Y, Barclay J A, Gopal R B, Földeaki M, Chahine R, Bose T K, Schurer P J and Lacombe J L 1996 J. App Phys. 79 1630
[31] Kittel C 2005 Introduction to Solid State Physics 8th edn (New York: John Wiley & Sons, Inc.)
[32] Aly S H 2001 J. Magn. Magn. Mater. 232 168
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|