Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 010503    DOI: 10.1088/0256-307X/27/1/010503
GENERAL |
A Passivity Based Synchronization for Chaotic Behavior in Nonlinear BlochEquations
Choon Ki Ahn
Faculty of the Division of Electronic and Control Engineering, Wonkwang University, 344-2 Shinyong-dong, Iksan 570-749, Korea
Cite this article:   
Choon Ki Ahn 2010 Chin. Phys. Lett. 27 010503
Download: PDF(350KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new passivity based synchronization scheme for chaotic behavior in nonlinear Bloch equations. Based on the Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the passivity based controller is presented to guarantee stable synchronization. The proposed controller can be obtained by solving a convex optimization problem represented by an LMI. A numerical example is given to demonstrate the effectiveness of the proposed synchronization scheme.
Keywords: 05.45.Gg      05.45.-a     
Received: 03 August 2009      Published: 30 December 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/010503       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/010503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Choon Ki Ahn

[1] Pecora L M and Carroll T L 1996 Phys. Rev. Lett. 64 821
[2] Chen G and Dong X 1998 From Chaos to Order(Singapore: World Scientific)
[3] Wang C C and Su J P 2004 Chaos, Solitons and Fractal 20 967
[4] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[5] Park J H 2005 Int. J. Nonlinear Sci. Numer. Simul. 6 201
[6] Wang Y, Guan Z H and Wang H O 2003 Phys. Lett. A 312 34
[7] Yang X S and Chen G 2002 Chaos, Solitons andFractals 13 1303
[8] Bai E and Lonngen K 1997 Phys. Rev. E 8 51
[9] Bai E W and Lonngren K E 2000 Chaos, Solitons andFractals 11 1041
[10] Park J H and Kwon O M 2005 Chaos, Solitons andFractals 23 445
[11] Wu X and Lu J 2003 Chaos, Solitons and Fractals 18 721
[12] Hu J, Chen S and Chen L 2005 Phys. Lett. A 339 455
[13] Zhan M, Wang X, Gong X, Wei G and Lai C 2003 Phys.Rev. E 68 6208
[14] Abergel D 2002 Phys. Lett. A 302 17
[15] Ucar A, Lonngren K E and Bai E W 2003 Phys. Lett. A 314 96
[16] Park J H 2006 Chaos, Solitons and Fractals 27357
[17] Ghosh D, Chowdhury A R and Saha P 2008 Commun.Nonlinear Sci. Numer. Simulat. 13 1461
[18] Willems J C 1972 Arch. Rational Mech. Anal. 45 321
[19] Wen Y 1999 IEEE Trans. Circuits Syst. I 46876
[20] Kemih K, Filali S, Benslama M and Kimouche M 2006 Int. J. Innovat. Comput. Inform. Control 2 331
[21] Wei D Q and Luo X S 2007 Chaos, Solitons andFractals 31 665
[22] Wang F and Liu C 2007 Physica D 225 55
[23] Kemih K 2008 Chaos, Solitons and Fractals(Preprint doi:10.1016/j.chaos.2008.07.042)
[24] Boyd S, Ghaoui L E, Feron E and Balakrishinan V 1994 Linear Matrix Inequalities in Systems and Control Theory(Philadelphia: SIAM)
[25] Byrnes C I, Isidori A and Willem J C 1991 IEEETrans. Automat. Contr. 36 1228
[26] Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 LMI Control Toolbox (Natick: Mathworks)
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 010503
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 010503
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010503
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 010503
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 010503
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 010503
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 010503
Viewed
Full text


Abstract