GENERAL |
|
|
|
|
A Passivity Based Synchronization for Chaotic Behavior in Nonlinear BlochEquations |
Choon Ki Ahn |
Faculty of the Division of Electronic and Control Engineering, Wonkwang University, 344-2 Shinyong-dong, Iksan 570-749, Korea |
|
Cite this article: |
Choon Ki Ahn 2010 Chin. Phys. Lett. 27 010503 |
|
|
Abstract We propose a new passivity based synchronization scheme for chaotic behavior in nonlinear Bloch equations. Based on the Lyapunov theory and linear matrix inequality (LMI) approach, for the first time, the passivity based controller is presented to guarantee stable synchronization. The proposed controller can be obtained by solving a convex optimization problem represented by an LMI. A numerical example is given to demonstrate the effectiveness of the proposed synchronization scheme.
|
Keywords:
05.45.Gg
05.45.-a
|
|
Received: 03 August 2009
Published: 30 December 2009
|
|
PACS: |
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
|
|
|
[1] Pecora L M and Carroll T L 1996 Phys. Rev. Lett. 64 821 [2] Chen G and Dong X 1998 From Chaos to Order(Singapore: World Scientific) [3] Wang C C and Su J P 2004 Chaos, Solitons and Fractal 20 967 [4] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196 [5] Park J H 2005 Int. J. Nonlinear Sci. Numer. Simul. 6 201 [6] Wang Y, Guan Z H and Wang H O 2003 Phys. Lett. A 312 34 [7] Yang X S and Chen G 2002 Chaos, Solitons andFractals 13 1303 [8] Bai E and Lonngen K 1997 Phys. Rev. E 8 51 [9] Bai E W and Lonngren K E 2000 Chaos, Solitons andFractals 11 1041 [10] Park J H and Kwon O M 2005 Chaos, Solitons andFractals 23 445 [11] Wu X and Lu J 2003 Chaos, Solitons and Fractals 18 721 [12] Hu J, Chen S and Chen L 2005 Phys. Lett. A 339 455 [13] Zhan M, Wang X, Gong X, Wei G and Lai C 2003 Phys.Rev. E 68 6208 [14] Abergel D 2002 Phys. Lett. A 302 17 [15] Ucar A, Lonngren K E and Bai E W 2003 Phys. Lett. A 314 96 [16] Park J H 2006 Chaos, Solitons and Fractals 27357 [17] Ghosh D, Chowdhury A R and Saha P 2008 Commun.Nonlinear Sci. Numer. Simulat. 13 1461 [18] Willems J C 1972 Arch. Rational Mech. Anal. 45 321 [19] Wen Y 1999 IEEE Trans. Circuits Syst. I 46876 [20] Kemih K, Filali S, Benslama M and Kimouche M 2006 Int. J. Innovat. Comput. Inform. Control 2 331 [21] Wei D Q and Luo X S 2007 Chaos, Solitons andFractals 31 665 [22] Wang F and Liu C 2007 Physica D 225 55 [23] Kemih K 2008 Chaos, Solitons and Fractals(Preprint doi:10.1016/j.chaos.2008.07.042) [24] Boyd S, Ghaoui L E, Feron E and Balakrishinan V 1994 Linear Matrix Inequalities in Systems and Control Theory(Philadelphia: SIAM) [25] Byrnes C I, Isidori A and Willem J C 1991 IEEETrans. Automat. Contr. 36 1228 [26] Gahinet P, Nemirovski A, Laub A J and Chilali M 1995 LMI Control Toolbox (Natick: Mathworks) |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|