Chin. Phys. Lett.  2010, Vol. 27 Issue (1): 010504    DOI: 10.1088/0256-307X/27/1/010504
GENERAL |
Cytoplasmic Ca2+ Dynamics under the Interplay between the Different IP3R Gating Models and the Plasma Membrane Ca2+ Influx
CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye, WANG Wei-Chi
Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
CHEN Xiao-Fang, LI Cong-Xin, WANG Peng-Ye et al  2010 Chin. Phys. Lett. 27 010504
Download: PDF(365KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The cytoplasmic Ca2+ oscillations are investigated under the effect of CRAC channels in non-excitable cells (especially in T cells). The oscillatory Ca2+ signals can be modulated as the amplitude-, frequency- and mixed amplitude-frequency modulation modes dependent on the different IP3R gating models. Bifurcation analyses show that Ca2+ signals in the single positive feedback loop model is a mixed modulation mode. In contrast, Ca2+ signals in the Mak-McBride-Foskett model demonstrates approximately the frequency modulation mode only with slight amplitude shifts.
Keywords: 05.45.-a      82.40.Bj     
Received: 02 July 2009      Published: 30 December 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  82.40.Bj (Oscillations, chaos, and bifurcations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/1/010504       OR      https://cpl.iphy.ac.cn/Y2010/V27/I1/010504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Xiao-Fang
LI Cong-Xin
WANG Peng-Ye
WANG Wei-Chi

[1] Bezprozvanny I, Watras J, and Ehrlich B E 1991 Nature 351 751
[2] De Young G W and Keizer J 1992 Proc. Natl. Acad. Sci.U.S.A. 89 9895
[3] Li Y X and Rinzel J 1994 J. Theor. Biol. 166461
[4] Meyer T and Stryer L 1988 Proc. Natl. Acad. Sci.U.S.A. 85 5051
[5] Luo M Y, Song K, Zhang X and Lee I 2009 Chin. Phys.Lett. 26 017102
[6] Mak D O, McBride S and Foskett J K 1998 Proc. Natl.Acad. Sci. U.S.A. 95 15821
[7] Zhang F, Lu Q S and Duan L X 2007 Chin. Phys. Lett. 24 3344
[8] Kawanishi T, Blank L M, Harootunian A T, Smith M T andTsien R Y 1989 J. Biol. Chem. 264 12859
[9] Lewis R S 2007 Nature 446 284
[10] Hogan P G and Rao A 2007 Trends Biochem. Sci. 32 235
[11] Vig M, Beck A, Billingsley J M, Lis A, Parvez S, PeineltC, Koomoa D L, Soboloff J, Gill D L, Fleig A, Kinet J P and Penner R2006 Curr. Biol. 16 2073
[12] Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, Chen Y, Hille B,Xu T and Chen L 2008 Proc. Natl. Acad. Sci. U.S.A. 10513668
[13] Chen X F, Li C X, Wang P Y, Li M and Wang W C 2008 Biophys. Chem. 136 87
[14] Politi A, Gaspers L D, Thomas A P and Hofer T 2006 Biophys. J. 90 3120
[15] Thomas A P, Bird G S, Hajnoczky G, Robb-Gaspers L D andPutney J W Jr 1996 FASEB J. 10 1505
[16] Marhl M, Schuster S, Brumen M and Heinrich R 1997 Biophys. Chem. 63 221
[17] Jafri M S, Vajda S, Pasik P and Gillo B 1992 Biophys. J. 63 235
[18] Kowalewski J M, Uhlen P, Kitano H and Brismar H 2006 Math. Biosci. 204 232
[19] Berridge M J 1997 Nature 386 759
[20] Parekh A B and Penner R 1997 Physiol. Rev. 77901
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 010504
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 010504
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 010504
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 010504
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 010504
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 010504
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 010504
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 010504
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 010504
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 010504
Viewed
Full text


Abstract