Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 088901    DOI: 10.1088/0256-307X/26/8/088901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
The Fractal Dimensions of Complex Networks
GUO Long, CAI Xu
Complexity Science Center and Institute of Particle Physics, Huazhong Normal University, Wuhan 430079
Cite this article:   
GUO Long, CAI Xu 2009 Chin. Phys. Lett. 26 088901
Download: PDF(333KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is shown that many real complex networks share distinctive features, such as the small-world effect and the heterogeneous property of connectivity of vertices, which are different from random networks and regular lattices. Although these features capture the important characteristics of complex networks, their applicability depends on the style of networks. To unravel the universal characteristics many complex networks have in common, we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the average `density' <ρ(r)> of complex networks follows a better power-law function as a function of distance r with the exponent df, which is defined as the fractal dimension, in some real complex networks. Furthermore, we study the relation between df and the shortcuts Nadd in small-world networks and the size N in regular lattices. Our present work provides a new perspective to understand the dependence of the fractal dimension df on the complex network structure.
Keywords: 89.75.Da      05.45.Df     
Received: 05 June 2009      Published: 30 July 2009
PACS:  89.75.Da (Systems obeying scaling laws)  
  05.45.Df (Fractals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/088901       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/088901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Long
CAI Xu
[1] Watts D J and Strogatz S H Nature 393 440(1998)
[2] Jeong H, Mason S P, Barabasi A L and Oltvai Z N 2001 Nature 411 41
[3] Newman M E J 2001 Phys. Rev. E 64 016131
[4] Newman M E J 2001 Phys. Rev. E 64 016132
[5] Guimer\`{a R, Danon L, Diaz-Guilera A, Giralt F andArenas A 2003 Phys. Rev. E 68 065103(R)
[6] Milgram S 1967 Psychol. Today 2 60
[7] Albert R, Jeong H and Barabasi A L 1999 Nature 401 130
[8] Song C, Havlin S, and Makse H A 2006 Nature Phys. 2 275
[9] Song C, Havlin S and Makse H A 2005 Nature 433392
[10] Goh K I, Salvi G, Kahng B and Kim D 2006 Phys.Rev. Lett. 96 018701
[11] Kim J S, Goh K-I, Salvi G, Oh E, Kahng B and Kim D 2007 Phys. Rev. E 75 016110
[12] Kim J S, Goh K I, Kahng B and Kim D 2007 New J.Phys. 9 177
[13] Zhou W X, Jiang Z Q and Sornette D 2007 Physica A 375 741
[14] Lee C Y and Jung S 2006 Phys. Rev. E 73066102
[15] Song C, Gallos L K, Havlin S and Makse H A 2007 J.Stat. Mech. 03 P03006
[16] Gao L, Hu Y and Di Z 2008 Phys. Rev. E 78046109
[17] Shanker O 2007 Mod. Phys. Lett. B 21 321
[18] Shanker O 2007 Mod. Phys. Lett. B 21 639
[19] Bu D et al 2003 Nucl. Acids Res. 31 2443
[20] Gleiser P M and Danon L 2003 Adv. Complex Syst. 6 565
[21] Newman M E J and Watts D J 1999 Phys. Rev. E 60 7332
[22] Toral R and Tessone C J 2007 Commun. Comput. Phys. 2 177
[23] Guo L and Cai X 2009 Commun. Comput. Phys. 6586
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 088901
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 088901
[3] LI Ling**, JIN Zhen-Lan . Scale-Free Brain Networks Based on the Event-Related Potential during Visual Spatial Attention[J]. Chin. Phys. Lett., 2011, 28(4): 088901
[4] ZHANG Jiang**, WANG You-Gui . Size Dependency of Income Distribution and Its Implications[J]. Chin. Phys. Lett., 2011, 28(3): 088901
[5] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 088901
[6] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 088901
[7] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 088901
[8] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 088901
[9] ZOU Sheng-Rong, XU Ying-Ying, XU Xiu-Lian, WANG Jian, HE Da-Ren** . A Simple Model of Interaction between Journals, Authors and Editorial Board Members[J]. Chin. Phys. Lett., 2011, 28(1): 088901
[10] XU Yan, GUO Liang-Peng, DING Ning, WANG You-Gui. Evidence of Scaling in Chinese Income Distribution[J]. Chin. Phys. Lett., 2010, 27(7): 088901
[11] LIU Jian-Ye, , GUO Wen-Jun. Finding a Probe for Extracting Information on the Momentum Dependent-Interaction in Heavy Ion Collisions[J]. Chin. Phys. Lett., 2010, 27(6): 088901
[12] ZHU Jun-Fang, HAN Xiao-Pu, WANG Bing-Hong,. Statistical Property and Model for the Inter-Event Time of Terrorism Attacks[J]. Chin. Phys. Lett., 2010, 27(6): 088901
[13] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 088901
[14] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 088901
[15] SHANG Ming-Sheng, CHEN Guan-Xiong, DAI Shuang-Xing, WANG Bing-Hong, ZHOU Tao,. Interest-Driven Model for Human Dynamics[J]. Chin. Phys. Lett., 2010, 27(4): 088901
Viewed
Full text


Abstract