CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Potential-Dependent Generalized Einstein Relation in Disordered Organic Semiconductors |
LU Xiao-Hong, SUN Jiu-Xun, GUO Yang, ZHANG Da |
Department of Applied Physics, University of Electronic Science and Technology, Chengdu 610054 |
|
Cite this article: |
LU Xiao-Hong, SUN Jiu-Xun, GUO Yang et al 2009 Chin. Phys. Lett. 26 087202 |
|
|
Abstract The generalized Einstein relation (GER) is extended to consider the potential energy of carriers in an electric field (PDGER). It can be equivalently seen as the GER having position-dependent Fermi energy, and implies the organic semiconductor is in non-equilibrium under an electric field. The distribution of the carrier density with position is solved for two polymer layers. The numerical results are used to evaluate the PDGER. It is shown that the ratio of diffusion coefficient to mobility, μ/D, increases with Fermi energy and decreases with carrier density. The PDGER gives non-traditional values for the two polymer layers; the value of μ/D is small near the surface, and slightly increases as the position departs from the surface.
|
Keywords:
72.80.-r
72.80.Le
73.20.-r
|
|
Received: 23 March 2009
Published: 30 July 2009
|
|
PACS: |
72.80.-r
|
(Conductivity of specific materials)
|
|
72.80.Le
|
(Polymers; organic compounds (including organic semiconductors))
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
|
|
|
[1] Burroughes J H, Bradley D D C, Brown A R, Marks R N,Mackay K, Friend R H, Burns P L, and Holmes A B 1990 Nature 347 539 [2] Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri Nand Heeger A J 1992 Nature 357 477 [3] Sirringhaus H 2005 Adv. Mater. 17 2411 [4] Chua L L, Zaumseil J, Chang J F, Ou E C, Ho P K,Sirringhaus H and Friend R H 2005 Nature 434 194 [5] Pasveer W F, Cottaar J and Tanase C 2005 Phys. Rev.Lett. 94 206601 [6] Zhou J, Zhou Y C, Zhao J M, Wu C Q, Ding X M and X Y Hou2007 Phys. Rev. B 75 153201 [7] Craciun N I, Wildeman J and Blom P W M 2005 Phys.Rev. Lett. 100 056601 [8] Blom P W M, de Jong M J M and van Munster M G 1997 Phys. Rev. B 55 R656 [9] Tanase C, Blom P W M and de Leeuw D M 2004 Phys.Rev. B 70 193202 [10] Roichman Y and Tessler N 2002 Appl. Phys. Lett. 80 1948 [11] Scher H and Montroll E M 1975 Phys. Rev. B 122455 [12] Horsche E M, Haarer D and Scher H 1987 Phys. Rev. B 35 1273 [13] Demeyu L and Sven S 2007 Phys. Rev. B 76155202 [14] Richert R, Pautmeier L and Bassler H 1989 Phys. Rev.Lett. 63 547 [15] Pinner D J, Friend R. H and Tessler N 1999 J. Appl.Phys. 86 5116 [16] Blom P W M and Vissenberg M 1998 Phys. Rev. Lett. 80 3819 [17] Peng Y Q, Yang J H and Lu F P 2006 Appl. Phys. A 83 305 [18] Peng Y Q, Yang J H, Lu F P, Yang Q S, Xing H W, Li X Sand Song C A 2007 Appl. Phys. A 86 225 [19] Das A and Khan A 2008 Appl. Phys. A 93 527 [20] Blickle V, Speck T, Lutz C, Seifert U and Bechinger C2007 Phys. Rev. Lett. 98 210601 [21] Speck T and Seifert U 2006 Europhys. Lett. 74391 [22] Tal O and Epstein I 2008 Phys. Rev. B 77201201 [23] Ashcroft N W and Mermin N D 1998 Solid StatePhysics (New York: Holt, Rinehart and Winston) [24] Tal O, Rosenwaks Y, Preezant Y, Tessler N, Chan C. K andKahn A 2005 Phys. Rev. Lett. 95 256405 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|