Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 087101    DOI: 10.1088/0256-307X/26/8/087101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Theoretical Study on the Propagation of Acoustic Phonon Modes in Single-Wall Carbon Nanotubes by Different Potential Models
CAO Bing1,2, ZHANG Wei1, HUAI Ping1, ZHU Zhi-Yuan1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 2018002Graduate University of the Chinese Academy of Sciences, Beijing 100049
Cite this article:   
CAO Bing, ZHANG Wei, HUAI Ping et al  2009 Chin. Phys. Lett. 26 087101
Download: PDF(400KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Propagation of a heat pulse in (10,0) zig-zag carbon nanotubes, modeled by the Brenner-II and Tersoff bond-order potentials, respectively, is investigated using a molecular dynamics simulation. The longitudinal acoustic mode, twisting phonon mode, and second sound waves are observed in the simulation. The time variations of speed and intensity of the above three phonon modes are in good agreement with the previous works based on the Brenner-I potential. Higher speed and weaker peak intensity are observed in the simulation of the Tersoff potential. The inherent over-binding of radicals and the non-local effects in Tersoff's covalent-bonding formula may play an important role in the heat pulse propagating simulation.
Keywords: 71.15.Pd      81.07.-b      72.10.Di     
Received: 16 October 2008      Published: 30 July 2009
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  72.10.Di (Scattering by phonons, magnons, and other nonlocalized excitations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/087101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/087101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Bing
ZHANG Wei
HUAI Ping
ZHU Zhi-Yuan
[1] Choi S U S et al 2001 Appl. Phys. Lett. 792252
[2] Berber S et al 2000 Phys. Rev. Lett. 84 4613
[3] Yao Z et al 2005 Phys. Rev. B 71 085417
[4] Pop E et al 2005 Phys. Rev. Lett. 95 155505
[5] Maruyama S 2002 Physica B 323 193
[6] Mahan G D 2002 Phys. Rev. B 65 235402
[7] Mahan G D et al 2004 Phys. Rev. B 70 075405
[8] Osman M A et al 2005 Phys. Rev. B 72 125413
[9] Kim T et al 2007 Phys. Rev. B 76 155424
[10] Shiomi J et al 2006 Phys. Rev. B 74 155401
[11] Shiomi J et al 2006 Phys. Rev. B 73 205420
[12] Tersoff J 1989 Phys. Rev. B 39 5566
[13] Brenner D W et al 2002 J. Phys.: Condens. Matter 14 783
[14] Zheng Q R et al 2002 Eur. Phys. J. B 25 233
[15] McNelly T F et al 1970 Phys. Rev. Lett. 24100
[16] Brenner D W et al 1990 Phys. Rev. B 42 9458
Related articles from Frontiers Journals
[1] WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer[J]. Chin. Phys. Lett., 2012, 29(6): 087101
[2] LU Ran,JIANG Gen-Shan,LI Bin,ZHAO Quan-Liang,ZHANG De-Qing,YUAN Jie,CAO Mao-Sheng**. Electrical Properties of Lead Zirconate Titanate Thick Film Containing Micro- and Nano-Crystalline Particles[J]. Chin. Phys. Lett., 2012, 29(5): 087101
[3] ZHANG Jing, CHEN Zheng, ZHUANG Hou-Chuan, LU Yan-Li. Microscopic Phase-Field Study of the Occupancy Probability of α Sublattices Involving Coordination Environmental Difference for D022−Ni3V[J]. Chin. Phys. Lett., 2012, 29(2): 087101
[4] LUO Bing-Cheng, CHEN Chang-Le**, FAN Fei, JIN Ke-Xin. The Photovoltaic Properties of BiFeO3La0.7Sr0.3MnO3 Heterostructures[J]. Chin. Phys. Lett., 2012, 29(1): 087101
[5] YANG Lin-Hong, DONG Hong-Xing, SUN Zheng, SUN Liao-Xin, SHEN Xue-Chu, CHEN Zhang-Hai** . Temperature-Induced Phase Transition of In2O3 from a Rhombohedral Structure to a Body-Centered Cubic Structure[J]. Chin. Phys. Lett., 2011, 28(8): 087101
[6] ZHANG Shi-Liang, ZHANG Xin-Yu, WANG Lin-Min, QI Li, ZHANG Su-Hong, ZHU Yan, LIU Ri-Ping** . Voronoi Structural Evolution of Bulk Silicon upon Melting[J]. Chin. Phys. Lett., 2011, 28(6): 087101
[7] LIU Hai-Tao, ZHONG Jia-Song, LIU Bing-Feng, LIANG Xiao-Juan, YANG Xin-Yu, JIN Huai-Dong, YANG Fan, XIANG Wei-Dong, ** . L-cystine-Assisted Growth and Mechanism of CuInS2 Nanocrystallines via Solvothermal Process[J]. Chin. Phys. Lett., 2011, 28(5): 087101
[8] HOU Zhi-Ling**, ZHOU Hai-Feng, YUAN Jie, KANG Yu-Qing, YANG Hui-Jing, JIN Hai-Bo, CAO Mao-Sheng** . Enhanced Ferromagnetism and Microwave Dielectric Properties of Bi0.95Y0.05FeO3 Nanocrystals[J]. Chin. Phys. Lett., 2011, 28(3): 087101
[9] YANG Xiao-Guang, YANG Tao**, WANG Ke-Fan, GU Yong-Xian, JI Hai-Ming, XU Peng-Fei, NI Hai-Qiao, NIU Zhi-Chuan, WANG Xiao-Dong, CHEN Yan-Ling, WANG Zhan-Guo . Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(3): 087101
[10] LI Zheng-Lin, DENG Shao-Zhi, XU Ning-Sheng, LIU Fei, CHEN Jun. Enhanced Field Emission from Large-Area Arrays of W18O49 Pencil-Like Nanostructure[J]. Chin. Phys. Lett., 2010, 27(6): 087101
[11] REN Kun, RAO Feng, SONG Zhi-Tang, WU Liang-Cai, ZHOU Xi-Lin, XIA Meng-Jiao, LIU Bo, FENG Song-Lin, XI Wei, YAO Dong-Ning, CHEN Bomy. Si3.5Sb2Te3 Phase Change Material for Low-Power Phase Change Memory Application[J]. Chin. Phys. Lett., 2010, 27(10): 087101
[12] XIANG Jun, SHEN Xiang-Qian, SONG Fu-Zhan, MENG Xian-Feng. Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers[J]. Chin. Phys. Lett., 2010, 27(1): 087101
[13] ZHANG Yang, YU Da-Peng. Novel Route to Fabrication of Metal-Sandwiched Nanoscale Tapered Structures[J]. Chin. Phys. Lett., 2009, 26(8): 087101
[14] ZHU Shao-Peng, TANG Shao-Chun, MENG Xiang-Kang. Monodisperse Silver Nanoparticles Synthesized by a Microwave-Assisted Method[J]. Chin. Phys. Lett., 2009, 26(7): 087101
[15] LI She-Qiang, FU Xing-Qiu, HU Bing, DENG Jia-Jun, CHEN Lei. Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts[J]. Chin. Phys. Lett., 2009, 26(11): 087101
Viewed
Full text


Abstract