CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Neutron Diffraction Measurements of a Thermally Fatigued Single Crystal Superalloy |
SUN Guang-Ai1,2, CHEN Bo1,2, WU Er-Dong3, LI Jin-Chao3, T. Pirling4, D. Hughes4 |
1Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 6100652Institute of Nuclear Physics and Chemistry, Mianyang 6219003National Laboratory for Materials Science, IMR CAS, Shenyang 1100164Institute of Laue Langevin, Grenoble 38042, France |
|
Cite this article: |
SUN Guang-Ai, CHEN Bo, WU Er-Dong et al 2009 Chin. Phys. Lett. 26 086201 |
|
|
Abstract The thermally fatigued single crystal superalloy DZ125L is investigated by neutron diffraction measurements. The measurements, made using the φ angle oscillating method, provide more detailed and reliable data than those with the φ angle fixed. Diffraction studies show that the influence of thermal fatigue on the lattice parameters of the alloy is very limited. The stress analysis reveals that triaxial elastic hydrostatic stress plays a major role during thermal fatigue. The magnitude of the macrostress increases with the fatigue cycles, with the stress of the γ phase increasing more significantly than that of the γ' phase, and becoming fragile after many cycles. The changes in the microstrain are dependent on the reflection planes. The microstrains at the center of the sample are released by the thermal fatigue in comparison with those at the outlying locations, which has been attributed to the advance of the dislocation slips.
|
Keywords:
62.40.+i
28.20.Cz
|
|
Received: 30 April 2009
Published: 30 July 2009
|
|
PACS: |
62.40.+i
|
(Anelasticity, internal friction, stress relaxation, and mechanical resonances)
|
|
28.20.Cz
|
(Neutron scattering)
|
|
|
|
|
[1] Lin Y C et al 2003 J. Mater. Proc. Technol. 138 22 [2] Biermann H et al 1995 Scripta Metall. Mater. 32 1405 [3] Kuhn H A et al 1991 Acta Metall. Mater. 392783 [4] Bhattachar V S 1995 Int. J. Fatigue 17 407 [5] Yang J X et al 2006 Rare Met. 25 202 [6] Menig R et al 2001 Scripta Mater. 45 977 [7] Muller L et al 1992 Scripta Metall. Mater. 261297 [8] Holden T M et al 1995 Physica B 213--214 793 [9] Lukas P et al 2000 Mater. Sci. Forum 321--3241046 [10] Wu E et al 2008 J. Phys: Condens. Matter 20104255 [11] Wu E, Li J C et al 2008 Metall. Mater. Trans. A 39 3141 [12] Sun G A et al 2009 Chin. Phys. Soc. 58 2549 [13] Lang C et al 1995 Acta Metall Mater. 431751 [14] Glatzel U et al 1994 Scripta Metall. Mater. 31 285 [15] Ma S et al 2003 Scripta Mater. 48 525 [16] Huang E W et al 2007 Int. J. Plasticity 241440 [17] Gilles R et al 2006 Acta Mater. 54 1307 [18] Marty B et al 1997 Acta Mater. 45 791 [19] Glatzel U et al 1994 Scripta Metall. Mater. 31 291 [20] Sieborger D et al 2001 Mater. Sci. Engin. A 298 26 [21] Ichitsubo T et al 2003 Acta Mater. 51 4863 [22] Darowski N et al 2005 J. Phys. D: Appl. Phys. 38 A200 [23] Westbrooke E F et al 2005 Acta Mater. 532137 [24] Fahrmann M et al 1996 Mater. Sci. Engng. A 210 8 [25] Zrnik J et al 2004 Mater. Sci. Engng. A 387--389 728 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|