Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 086105    DOI: 10.1088/0256-307X/26/8/086105
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The MAEAM Model and Anharmonic Theory for the Bulk Modulus of Al Metal
LIAO Shu-Zhi1, WANG Xiao-Li1, ZHU Xiang-Ping2, ZHANG Chun3, OUYANG Yi-Fang4, ZHANG Bang-Wei 5,6
1Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 4100812College of Electronic Engineering and Physics, Hunan University of Science and Engineering, Yongzhou 4250063College of Mathematics and Computer Science, Hunan Normal University, Changsha 4100814Department of Physics, Guangxi University, Nanning 5300045Department of Applied Physics, Hunan University, Changsha 4100826International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015
Cite this article:   
LIAO Shu-Zhi, WANG Xiao-Li, ZHU Xiang-Ping et al  2009 Chin. Phys. Lett. 26 086105
Download: PDF(321KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The modified analytic embedded atom method (MAEAM) model and the anharmonic theory are used to study the bulk modulus of fcc Al metal. The result shows that the bulk modulus can be described by a quadratic function of temperature. The result is in good agreement with the experimental data and theoretical results calculated by the first principle calculation etc. This outcome indicates that the temperature dependence of the bulk modulus for fcc Al metal can be academically studied with the MAEAM model combining with the anharmonic theory.
Keywords: 61.50.Ah      02.30.Em      63.20.Ry      46.25.-y     
Received: 05 February 2009      Published: 30 July 2009
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  02.30.Em (Potential theory)  
  63.20.Ry (Anharmonic lattice modes)  
  46.25.-y (Static elasticity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/086105       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/086105
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAO Shu-Zhi
WANG Xiao-Li
ZHU Xiang-Ping
ZHANG Chun
OUYANG Yi-Fang
ZHANG Bang-Wei
[1] Shen B L 1996 Rare Metal Mater. Eng. 25 46
[2] Andersson A 2007 J. Mater. Eng. Perform. 16301
[3] Sutton P M 1953 Phys. Rev. 91 816
[4] Gibbons D F 1958 Phys. Rev. 112 136
[5] Zhang Z Q 1986 J. Sichuan Normal University (NatuarlScience) 3 62 (in Chinese)
[6] Moruzzi V L and Janak J F 1988 Phys. Rev. B 37790
[7] Debernardi A, Alouani M and Dreysse H 2001 Phys.Rev. B 63 064305
[8] Forsblom M, Sandberg N and Grimvall G 2004 Phys.Rev. B 69 165106
[9] Forsblom M and Grimvall G 2005 Phys. Rev. B 72132204
[10] Hai N T 2005 Proceeding of the 8th German-VietnameseSeminar on Physics and Engineering (Erlangen) p 1
[11] Daw M S, Baske M I 1984 Phys. Rev. B 29 6443
[12] Johnson R A 1988 Phys. Rev. B 37 3924
[13] Johnson R A 1990 Phys. Rev. B 41 9717
[14] Zhang B W, Hu W Y and Shu X L 2002 Theory ofEmbedded Atom Method and Its Application to Material Science(Changsha: Hunan University Press) p 1 (in Chinese)
[15] Zhang B W and Ouyang Y F 1993 Phys. Rev. B 483022
[16] Hu W Y, Zhang B W, Huang B Y et al 2001 J. Phys.:Condens. Matter. 13 1193
[17] Chen Y, Liao S Z and Deng H Q 2007 Appl. Surf. Sci. 253 6074
[18] Zheng R L and Wu X Y 1991 J. Westsouth NormalUniversity (Natural Science) 16 432 (in Chinese)
[19] Reed R P and Clark A F 1985 Materials at LowTemperatures(Metals Park, Ohio: American Society for Metals) p 1
[20] Girifalco L A and Weizer V G 1959 Phys. Rev. B 114 678
[21] Thakur K P 1985 J. Phys. F: Met. Phys. 152421
[22] Gaudoin R, Foulkes W M C and Rajagopal G 2002 J.Phys.: Condens. Matter. 14 8787
[23] Bercegeay C and Bernard S 2005 Phys. Rev. B 72 214101
[24] Milstein F and Huang K 1979 Phys. Rev. B 192030
Related articles from Frontiers Journals
[1] LIU Yang**,PENG Xing-Ping. Validity of Nonlinear Thermodynamic Models in Ferroelectric-Paraelectric Bilayers and Superlattices[J]. Chin. Phys. Lett., 2012, 29(5): 086105
[2] LUO Xiao-Guang, HE Ju-Long. B–C–N Compounds with Mixed Hybridization of sp2-Like and sp3-Like Bonds[J]. Chin. Phys. Lett., 2012, 29(3): 086105
[3] ZHANG Jing, CHEN Zheng, ZHUANG Hou-Chuan, LU Yan-Li. Microscopic Phase-Field Study of the Occupancy Probability of α Sublattices Involving Coordination Environmental Difference for D022−Ni3V[J]. Chin. Phys. Lett., 2012, 29(2): 086105
[4] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 086105
[5] LIU Yang**, PENG Xing-Ping . Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain Epitaxial BiFeO3 Films[J]. Chin. Phys. Lett., 2011, 28(6): 086105
[6] DENG Hong-Yan, HAO Wei-Chang, XU Huai-Zhe** . A Transition Phase in the Transformation from α-;, β- and ϵ- to δ-Bismuth Oxide[J]. Chin. Phys. Lett., 2011, 28(5): 086105
[7] HU Qian-Ku, **, WANG Hai-Yan, WU Qing-Hua, HE Ju-Long, ZHANG Guang-Lei . Structural and Electronic Properties, and Pressure-Induced Phase Transition of Layered C5N: a First-Principles Investigation[J]. Chin. Phys. Lett., 2011, 28(12): 086105
[8] LI Li-Juan, ZHAO Ming-Wen, JI Yan-Ju, LI Feng, LIU Xiang-Dong. Energetic Evolution of Single-Crystalline ZnO Nanowires and Nanotubes[J]. Chin. Phys. Lett., 2010, 27(8): 086105
[9] JIN Yun-Fei, YE Xiang-Xi, LI Jing-Tian, ZHANG Wen-Xian, ZHUANG Jun, NING Xi-Jing,. A Simple Theoretical Method to Predict the Hardness of Pure Metal Crystals[J]. Chin. Phys. Lett., 2010, 27(7): 086105
[10] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic q-Breathers in a Fermi-Pasta-Ulam Lattice[J]. Chin. Phys. Lett., 2010, 27(2): 086105
[11] SHAO Xi. Indication of Low-Energy BC5 Structures[J]. Chin. Phys. Lett., 2010, 27(1): 086105
[12] XU Quan, QIANG Tian. Two-dimensional discrete gap breathers in a two-dimensional discrete diatomic Klein-Gordon lattice[J]. Chin. Phys. Lett., 2009, 26(7): 086105
[13] ZHANG Jing, CHEN Zheng, LU Yan-Li, WANG Yong-Xin, ZHAO Yan. Antisite Defects of the L12 Structure Determined by the Phase Field Microelasticity Model[J]. Chin. Phys. Lett., 2009, 26(6): 086105
[14] XU Quan, TIAN Qiang. Periodic, Quasiperiodic and Chaotic Discrete Breathers in a Parametrical Driven Two-Dimensional Discrete Klein-Gordon Lattice[J]. Chin. Phys. Lett., 2009, 26(4): 086105
[15] LIN Zhi-Ping, ZHAO Yu-Jun, ZHAO Yan-Ming. Li- Site and Metal-Site Ion Doping in Phosphate-Olivine LiCoPO4 by First-Principles Calculation[J]. Chin. Phys. Lett., 2009, 26(3): 086105
Viewed
Full text


Abstract