Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 085201    DOI: 10.1088/0256-307X/26/8/085201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
One-Dimensional Fluid Model for Dust Particles in Dual-Frequency Capacitively Coupled Silane Discharges
LIU Xiang-Mei, SONG Yuan-Hong, WANG You-Nian
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024
Cite this article:   
LIU Xiang-Mei, SONG Yuan-Hong, WANG You-Nian 2009 Chin. Phys. Lett. 26 085201
Download: PDF(1138KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A self-consistent fluid model, which incorporates density and flux balances of electrons, ions, neutrals and nanoparticles, electron energy balance, and Poisson's equation, is employed to investigate the capacitively coupled silane discharge modulated by dual-frequency electric sources. In this discharge process, nanoparticles are formed by a successive chemical reactions of anion with silane. The density distributions of the precursors in the dust particle formation are put forward, and the charging, transport and growth of nanoparticles are simulated. In this work, we focus our main attention on the influences of the high-frequency and low-frequency voltage on nanoparticle densities, nanoparticle charge distributions in both the bulk plasma and sheath region.
Keywords: 52.27.Lw      52.65.-y      52.80.Pi     
Received: 02 March 2009      Published: 30 July 2009
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.65.-y (Plasma simulation)  
  52.80.Pi (High-frequency and RF discharges)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/085201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/085201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Xiang-Mei
SONG Yuan-Hong
WANG You-Nian
[1] Watanabe Y 2006 J. Phys. D: Appl. Phys. 39R329
[2] Nienhuis G J, Goedheer W J, Hamers E A G, van Sark W G J HM and Bezemer J 1997 J. Appl. Phys. 82 2060
[3] Akdim M R and Goedheer W J 2003 J. Appl. Phys. 94 104
[4] De Bleecker K, Bogaerts A, Gijbels R and Goedheer W 2004 Phys. Rev. E 69 056409
[5] De Bleecker K, Bogaerts A and Goedheer W 2004 Phys.Rev. E 70 056407
[6] De Bleecker K, Bogaerts A, Gijbels R and Goedheer W 2006 J. New. Phys. 8 178
[7] Goto H H, Lowe H D and Ohmi T 1992 J. Vac. Sci.Technol. A 10 3048
[8] Kitajima T, Takeo Y and Makabe T 1999 J. Vac. Sci.Technol. A 17 2510
[9] Yoda T, Fujita K, Miyajima H, Nakata R, Nishiyama Y,Nakasaki Y and Hayasaka N 2004 Jpn. J. Appl. Phys. 435984
[10] Kim D H, Lee C H, Cho S H, Lee N E and Kwon G C 2005 J. Vac. Sci. Technol. B 23 2203
[11] Perrin J, Leroy O, and Bordage M C 1996 Contrib.Plasma Phys. 36 3
[12] De Bleecker K and Bogaerts A 2006 Phys. Rev. E 73 026405
[13] McDaniel E W and Mason E A 1973 The Mobility andDiffusion of Ions in Gases (New York: Wiley)
Related articles from Frontiers Journals
[1] Hafeez Ur Rehman. Electrostatic Dust Acoustic Solitons in Pair-Ion-Electron Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 085201
[2] B. Farokhi, A. Hameditabar. Comparison of Dust Lattice Waves in Three-Dimensional Cubic Configurations[J]. Chin. Phys. Lett., 2012, 29(2): 085201
[3] WU Jing, **, ZHANG Peng-Yun, SUN Ji-Zhong, YAO Lie-Ming, DUAN Xu-Ru . Dust Particle Density and Charges in Radio-Frequency Mixture Discharge Plasma[J]. Chin. Phys. Lett., 2011, 28(9): 085201
[4] B. Farokhi, ** F. Amini, M. Eghbali . Dust Acoustic Rotation Modes in Magnetized Complex Plasmas[J]. Chin. Phys. Lett., 2011, 28(7): 085201
[5] LI Ming-Zhu, AN Zheng-Hua**, ZHOU Lei, MAO Fei-Long, WANG Heng-Liang . Strong Coupling between Propagating and Localized Surface Plasmons in Plasmonic Cavities[J]. Chin. Phys. Lett., 2011, 28(7): 085201
[6] CHEN Zhao-Quan, **, LIU Ming-Hai***, ZHOU Qi-Yan, HU Ye-Lin, YANG An, ZHU Long-Ji, HU Xi-Wei . Numerical Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface[J]. Chin. Phys. Lett., 2011, 28(4): 085201
[7] YANG Cheng, ZHANG Gang, LEE Dae-Young, LI Hua-Min, LIM Young-Dae, YOO Won Jong**, PARK Young-Jun, KIM Jong-Min . Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications[J]. Chin. Phys. Lett., 2011, 28(3): 085201
[8] LI Bin, CHEN Qiang**, LIU Zhong-Wei, WANG Zheng-Duo . A Large Gap of Atmospheric Pressure RF-DBD Glow Discharges in Ar and Mixed Gases[J]. Chin. Phys. Lett., 2011, 28(1): 085201
[9] SUN Xiao-Xia, WANG Chun-Hua, GAO Feng. Lattice Waves in Two-Dimensional Hexagonal Quantum Plasma Crystals[J]. Chin. Phys. Lett., 2010, 27(2): 085201
[10] HUANG Feng**, LIU Yan-Hong, YE Mao-Fu, WANG Xue-Jin, WANG Long . Structures and Dynamics of Two-Dimensional Dust Lattices with and without Coulomb Molecules in Plasmas[J]. Chin. Phys. Lett., 2010, 27(11): 085201
[11] YANG Wen, ZENG Zhi. Structure and Spectrum of Binary Classic Systems Confined in a Parabolic Trap[J]. Chin. Phys. Lett., 2009, 26(4): 085201
[12] YU Qian, DENG Yong-Feng, LIU Yue, HAN Xian-Wei. Numerical Study on Characteristics of Argon Radio-Frequency Glow Discharge with Varying gas Pressure[J]. Chin. Phys. Lett., 2008, 25(7): 085201
[13] LIU Yu, DAI Zhong-Ling, WANG You-Nian. Dust Particle Properties in a Dual-Frequency Driven Sheath[J]. Chin. Phys. Lett., 2008, 25(4): 085201
[14] LI Ying-Hong, WU Yun, JIA Min, ZHOU Zhang-Wen, GUO Zhi-Gang, Yi-Kang. Optical Emission Spectroscopy Investigation of a Surface Dielectric Barrier Discharge Plasma Aerodynamic Actuator[J]. Chin. Phys. Lett., 2008, 25(11): 085201
[15] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2007, 24(8): 085201
Viewed
Full text


Abstract