Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 084702    DOI: 10.1088/0256-307X/26/8/084702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Derivation of the Convective Dispersion Equation with Adsorption by Markov Random Ways
WU Jing-Chun, QIN Sheng-Gao, WANG Yang
Key Laboratory of Enhanced Oil and Gas Recovery of Education Ministry, Daqing Petroleum Institute, Daqing 163318
Cite this article:   
WU Jing-Chun, QIN Sheng-Gao, WANG Yang 2009 Chin. Phys. Lett. 26 084702
Download: PDF(215KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The convective dispersion equation with adsorption is derived on the basis of the Chapman-Kolmogroff equation which expresses the statistical properties of the Markov transition probability. The acquired equation has the same expression as the one derived on the basis of the combination of both the mass balance equation and the particles retention kinetics equation. The probability variables that describe the random movement of solute particles have a definite physical significance associated with the parameters in the convective dispersion equation. The derivation confirms the validity of the Markov process to describe the particles movement in the process of convective dispersion.
Keywords: 47.56.+r      47.27.eb     
Received: 09 March 2009      Published: 30 July 2009
PACS:  47.56.+r (Flows through porous media)  
  47.27.eb (Statistical theories and models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/084702       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/084702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jing-Chun
QIN Sheng-Gao
WANG Yang
[1] Zhang M Q, Zeng Z Z, Zou Q Y, Han L S, Gao H X and Wu KJ 1993 J. Lanzhou University 29 222 (in Chinese)
[2] Wang J, Yao H S and Luo P Y 2000 PetroleumExploitation and Development 27 (3) 40 (in Chinese)
[3] Zhang F C, Kang S Z and Pan Y H 2002 Shuili Xuebao 31 (3) 84 (inChinese)
[4] Ge J L 2003 Modern Mechanics of Fluid Flow in Porous Reservoir(Beijing: Petroleum Industry Press) p 282 (in Chinese)
[5] Zhang Z H, Zhao C G and Li T 2008 Rock and SoilMechanics 29 28 (in Chinese)
[6] Zhang H M, Su B Y 2004 J. Irrigation and Draining 23 (3) 70 (inChinese)
[7] Ye W M, Jin Q and Huang Y 2005 Shuili Xuebao 36 251 (in Chinese)
[8] Cui C Z, Luan Z A 1997 J. Hydrodynamics A 1272 (in Chinese)
[9] Xu J P, Wang L Z and Liu C 2001 Well Testing 10 (6) 7 (inChinese)
[10] Iwasaki T 1937 Water Works Assoc 29 1591
[11] Alto\'{e F J E, Bedrikovetsky P and Siqueira A G 2004 SPE90083 (Houston 26--29 September 2004) p 1
[12] Ge J L 2001 Modern Mechanics of Fluid Flow in Porous Reservoir(Beijing: Petroleum Industry Press) p 282 (in Chinese)
[13] Li G M and Chen C X 1995 Earth Science: J. ChinaUniversity of Geosciences 20 405 (in Chinese)
[14] Liu J G, Wang H T and Nie Y F 2004 Adv. WaterSci. 15 458 (in Chinese)
[15] Wang K, Zhang R D and Zhou Z H 2007 Shuili Xuebao 38 690 (in Chinese)
[16] Chang F X, Wu J C and Dai S H 2004 J. NanjingUniversity (Natural Sciences) 40 287 (in Chinese)
[17] Chang F X, Wu J C and Xue Y Q 2005 J.Hydrodynamics 20 233 (in Chinese)
[18] Chen J, Huang G H and Huang Q Z 2006 Adv. WaterScience 17 299 (in Chinese)
[19] Xia Y and Wu J C 2007 J. Nanjing University(Natural Sciences) 43 (4) 441 (in Chinese)
[20] Wu F, Cao Y Q and Li C S 2004 Mathematics inPractice and Theory 34 (6) 106 (in Chinese)
[21] Zeng L, Zuo G H and Gong X J 2008 Chin. Phys Lett. 25 2758
[22] Zeng L, Guo H K, Zuo G H,Wan R Z and Fang H P 2009 Chin. Phys.Lett. 26 038701
[23] Wang Z T and Lang Z X 1996 J. China PetroleumUniversity (Natural Science) 20 (6) 29 (in Chinese)
[24] Gardiner C W 1997 Handbook of Stochastic Methods (Berlin: Springer) p 42
[25] Ge J L 2003 Modern Mechanics of Fluid Flow inPorous Reservoir (Beijing: Petroleum Industry Press) p 303 (inChinese)
Related articles from Frontiers Journals
[1] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 084702
[2] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 084702
[3] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 084702
[4] ZHAO Si-Cheng, LIU Qiu-Sheng**, NGUYEN-THI Henri, BILLIA Bernard . Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2011, 28(2): 084702
[5] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 084702
[6] WU Jing-Chun, QIN Sheng-Gao, LV Xiao-Ming. Statistical Analysis of the Random Convective Dispersion Models[J]. Chin. Phys. Lett., 2010, 27(3): 084702
[7] ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri, BILLIA Bernard. Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane[J]. Chin. Phys. Lett., 2010, 27(2): 084702
[8] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 084702
[9] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 084702
[10] ZENG Li, ZUO Guang-Hong, GONG Xiao-Jing, LU Hang-Jun, WANGChun-Lei, WU Ke-Fei, WAN Rong-Zheng,. Water and Ion Permeation through Electrically Charged Nanopore[J]. Chin. Phys. Lett., 2008, 25(4): 084702
[11] TU Tao, HAO Xiao-Jie, GUO Guo-Ping, GUO Guang-Can. Two-Time Diffusion Process in the Porous Medium[J]. Chin. Phys. Lett., 2007, 24(8): 084702
Viewed
Full text


Abstract