Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 084701    DOI: 10.1088/0256-307X/26/8/084701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Vortex Structures and Behavior of a Flow Past Two Rotating Circular Cylinders Arranged Side-by-Side
GUO Xiao-Hui1, LIN Jian-Zhong1,2, NIE De-Ming1
1Institute of Fluid Mechanics, China Jiliang University, Hangzhou 3100182Department of Mechanics, Zhejiang University, Hangzhou 310027
Cite this article:   
GUO Xiao-Hui, LIN Jian-Zhong, NIE De-Ming 2009 Chin. Phys. Lett. 26 084701
Download: PDF(896KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a study on the vortex structures and behavior of a flow past two rotating circular cylinders arranged side-by-side at a range of absolute rotational speeds (|α|≤2) for two different gap spacings g*=1.5 and 0.7 at Reynolds numbers Re=160 and 200. The results show that the flow becomes stabilized and finally steady beyond the critical rotational speed as |α| increases, regardless of the variation in Re and g*. The value of critical rotational speed increases with increasing Re. The wake patterns change in the unsteady regimes for g*=1.5 and 0.7. With increasing |α|, the time-averaged drag coefficient -CD decreases and the lift coefficient -CL increases, respectively. CD at Re=160 and g*=0.7 decreases rapidly, resulting in the smallest value at the same |α| for 1≤|α|≤2. -CD augments with increasing g* at the same |α|. For g*=1.5, -CD has a little disparity between the cases of Re=160 and 200. For the flow past two still cylinders, -CL is inversely proportional to g* of two cylinders for a fixed |α|, and is not dependent on Re.
Keywords: 47.32.Cd      47.11.Qr     
Received: 19 April 2009      Published: 30 July 2009
PACS:  47.32.cd (Vortex stability and breakdown)  
  47.11.Qr (Lattice gas)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/084701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/084701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Xiao-Hui
LIN Jian-Zhong
NIE De-Ming
[1] Kang S 2003 Phys. Fluids 15 2486
[2] Spivack H M 1946 J. Aeronaut. Sci. 13 289
[3] Bearman P W and Wadcock A J 1973 J. Fluid Mech. 61 499
[4] Sumner D, Wong S S T, Price S J and Paidoussis M P 1999 J. Fluids Structure 13 309
[5] Zhou Y, So R M C, Liu M H and Zhang H J 2000 Int. J.Heat Fluid Flow 21 125
[6] Zhou Y, Wang Z J, So R M C, Xu S J and Jin W 2001 J.Fluid Mech. 443 197
[7] Zhou Y, Zhang H J and Yiu M W 2002 J. Fluid Mech. 458 303
[8] Xu S J, Zhou Y and So R M C 2003 Phys. Fluids 15 1214
[9] Mahbub M A and Zhou Y 2007 J. Fluids Structure 23 799
[10] Kang S, Choi H and Lee S 1999 Phys. Fluids 11 3312
[11] Stojkovi\'c D, Breuer M and Durst F 2002 Phys.Fluids 14 3160
[12] Mittal S and Kumar B 2003 J. Fluid Mech. 476303
[13] St\'{ephane C, Abdelhak A and Nicolas R 2007 Phys.Fluids 19 103101.
[14] Yoon H S, Kim J H, Chun H H and Choi H J 2007 Phys.Fluids 19 128103
[15] Yoon H S, Chun H H, Kim J H and Ryong Park I L 2009 Comput. Fluids 38 466
[16] Yu Z S and Shao X M 2007 J. Comput. Phys. 227 292
[17] Feng Z G and Michaelides E E 2004 J. Comput. Phys. 195 602
[18] Feng Z G and Michaelides E E 2005 J. Comput. Phys. 202 20
[19] Niu X D, Shu C, Chew Y T and Peng Y 2006 Phys.Lett. A 354 173
[20] Shi X and Lim S P 2007 J. Comput. Phys. 2262028
[21] Dupuis A, Chatelain P and Koumoutsakos P 2008 J.Comput. Phys. 227 4486
[22] Chen S, Martinez D O and Mei R 1996 Phys. Fluids 8 2527
[23] Maier R S, Bernard R S and Grunau D W 1996 Phys.Fluids 8 1788
[24] Chen S and Doolen G D 1998 Ann. Rev Fluid Mech. 30 329
[25] Guo Z L, Zheng C G and Shi B C 2002 Chin. Phys. 11 366
[26] Guo Z L and Zheng C G 2002 Phys. Fluids 142007
[27] Nie D M and Lin J Z 2004 Chin. J. Comput. Phys. 1 21
Related articles from Frontiers Journals
[1] NIE De-Ming, LIN Jian-Zhong, . Characteristics of Flow around an Impulsively Rotating Square Cylinder via LB-DF/FD Method[J]. Chin. Phys. Lett., 2010, 27(10): 084701
[2] KIM Dehee, KIM Hyung Min, JHON Myung S., VINAY III Stephen J., BUCHANAN John. A Characteristic Non-Reflecting Boundary Treatment in Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(6): 084701
[3] RAN Zheng. Thermo-Hydrodynamic Lattice BGK Schemes with Lie Symmetry Preservation[J]. Chin. Phys. Lett., 2008, 25(11): 084701
[4] RAO Yong, NI Yu-Shan, LIU Chao-Feng. Multi-Bifurcation Effect of Blood Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2008, 25(11): 084701
[5] RAN Zheng. Note on Invariance of One-Dimensional Lattice-Boltzmann Equation[J]. Chin. Phys. Lett., 2007, 24(12): 084701
[6] CHEN Zhi-Hua, FAN Bao-Chun, Nadine AUBRY, ZHOU Ben-Mou. Electro-Magnetic Control of Vortex Shedding Behind a Circular Cylinder[J]. Chin. Phys. Lett., 2006, 23(1): 084701
Viewed
Full text


Abstract