Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 084208    DOI: 10.1088/0256-307X/26/8/084208
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Theoretical Analysis of Interference Nanolithography of Surface Plasmon Polaritons without a Match Layer
WANG Jing-Quan, LIANG Hui-Min, SHI Sha, DU Jing-Lei
Department of Physics, Sichuan University, Chengdu 610064
Cite this article:   
WANG Jing-Quan, LIANG Hui-Min, SHI Sha et al  2009 Chin. Phys. Lett. 26 084208
Download: PDF(516KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Interference nanolithography techniques based on long-range surface plasmon polaritons (LR-SPP) are hardly ever achieved by experiments at present. One key reason is that suitable liquid materials are difficult to find as the match layer connects the metal film and the resist. We redesign a Kretschmann-Raether structure for interference lithography. A polymer layer is coated under the metal film, and an air layer is placed between the polymer layer and the resist layer. This design not only avoids the above-mentioned question of the match layer, but also can form a soft contact between the polymer layer and the resist layer and can protect the exposure pattern. Simulation results confirm that a device with an appropriately thick polymer layer can form high intensity and contrast interference fringes with a critical dimension of about λ/7 in the resist. In addition, the fabrication of the device is very easy.
Keywords: 42.79.-e      42.25.Hz      52.35.Hr     
Received: 20 April 2009      Published: 30 July 2009
PACS:  42.79.-e (Optical elements, devices, and systems)  
  42.25.Hz (Interference)  
  52.35.Hr (Electromagnetic waves (e.g., electron-cyclotron, Whistler, Bernstein, upper hybrid, lower hybrid))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/084208       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/084208
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jing-Quan
LIANG Hui-Min
SHI Sha
DU Jing-Lei
[1] Raether H 1988 Surface Plasmons (Berlin: Spinger)
[2] Liu Z W, Wei Q H and Zhang X 2005 Nano Lett. 5957
[3] Luo X G and Ishihara T 2004 Appl. Phys. Lett. 84 4780
[4] Shao D B and Chen S C 2005 Appl. Phys. Lett. 86 253107
[5] Bouhelier A, Ignatovich E, Bruyant A, Huang C, Francs G C,Weeber J C, Dereux A, Wiederrecht G P and Novotny L 2007 Opt.Lett. 32 2535
[6] Srituravanich W, Durant S, Lee H, Sun C and Zhang X 2005 J. Vac. Sci. Technol. B 23 2636
[7] Guo X W, Du J L, Guo Y K and Yao J 2006 Opt. Lett. 31 2613
[8] Bezus E A, Bykov D A, Doskolovich L L and Kadomin I I 2008 J. Opt. A: Pure Appl. Opt. 10 095204
[9] Guo X W, Du J L, Luo X G, Du C L and Guo Y K 2007 Microelectron. Eng. 84 1037
[10] Allione M, Temnov V V, Fedutik Y, Woggon U and Artemyev MV 2008 Nano Lett. 8 31
[11] Lim Y, Kim S, Kim H, Jung J and Lee B 2008 IEEE J. Quant. Electron. 44 305
Related articles from Frontiers Journals
[1] M. Afshari Bavil,SUN Xiu-Dong*,HUANG Feng. Frequency Selective Propagation by Employing Fabry–Perot Nanocavities in a Subwavelength Double-slit Structure[J]. Chin. Phys. Lett., 2012, 29(4): 084208
[2] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 084208
[3] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 084208
[4] CHEN Xiao-Yong, SHENG Xin-Zhi**, WU Chong-Qing. Influence of Multi-Cascaded Semiconductor Optical Amplifiers on the Signal in an Energy-Efficient System[J]. Chin. Phys. Lett., 2012, 29(1): 084208
[5] CAO Bin**, ZHANG Chun-Xi, OU Pan, LIN Zhi-Li, SUN Ming-Jie. Two-Detector Arbitrary Nth-Order HBT-Type Ghost Diffraction[J]. Chin. Phys. Lett., 2012, 29(1): 084208
[6] YU Huai-Yong, **, ZHANG Chun-Xi, FENG Li-Shuang, HONG Ling-Fei, WANG Jun-Jie, . Optical Noise Analysis in Dual-Resonator Structural Micro-Optic Gyro[J]. Chin. Phys. Lett., 2011, 28(8): 084208
[7] ZHOU Jing-Tao**, SHEN Hua-Jun, YANG Cheng-Yue, LIU Huan-Ming, TANG Yi-Dan, LIU Xin-Yu . Compact 2×2 Multi-Mode Interference Couplers with Uneven Splitting-Ratios Based on Silicon Nanowires[J]. Chin. Phys. Lett., 2011, 28(8): 084208
[8] ZHU Jia-Hu, HUANG Xu-Guang**, MEI Xian . Double-Teeth-Shaped Plasmonic Waveguide Electro-Optical Switches[J]. Chin. Phys. Lett., 2011, 28(8): 084208
[9] LI Pei-Ning, LIU You-Wen**, MENG Yun-Ji, ZHU Min-Jun . A Multifrequency Cloak with a Single Shell of Negative Index Metamaterials[J]. Chin. Phys. Lett., 2011, 28(6): 084208
[10] XU Cheng, **, XU Lin-Min, ZHANG Han-Zhuo, QIANG Ying-Huai, ZHU Ya-Bo, LIU Jiong-Tian, SHAO Jian-Da . Comparative Studies on the Laser Damage Resistance of Ta2O5 and Nb2O5 Films Performed under Different Electron Beam Currents[J]. Chin. Phys. Lett., 2011, 28(6): 084208
[11] ZHANG Zheng, PAN Di, YU Yu**, ZHANG Xin-Liang . All-Optical Format Conversion from RZ-DPSK to NRZ-DPSK at 40Gbit/s[J]. Chin. Phys. Lett., 2011, 28(5): 084208
[12] HU Xiao-Gen**, LI Yu-He**, LIN Hao-Shan, WANG Dong-Sheng, QI Xin . Second Harmonic Generation in Scanning Probe Microscopy for Edge Localization[J]. Chin. Phys. Lett., 2011, 28(4): 084208
[13] XIAO Fu-Liang, **, HE Zhao-Guo ZHANG Sai, SU Zhen-Peng, CHEN Liang-Xu, . Diffusion Simulation of Outer Radiation Belt Electron Dynamics Induced by Superluminous L-O Mode Waves[J]. Chin. Phys. Lett., 2011, 28(3): 084208
[14] XU Qi-Yuan**, LIU Zheng-Tang, LI Yang-Ping, WU Qian, ZHANG Shao-Feng . Antireflective Characteristics of Sub-Wavelength Periodic Structure with Square Hole[J]. Chin. Phys. Lett., 2011, 28(2): 084208
[15] FAN Lin-Yong**, JIANG Wei-Wei, ZHAO Rui-Feng, PEI Li, JIAN Shui-Sheng . Multi-Beam Interference Transmission Spectrum Observed from an Eccentric Core Single-Mode Fiber[J]. Chin. Phys. Lett., 2011, 28(2): 084208
Viewed
Full text


Abstract