FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Tunable All-Optical Filtering and Buffering in a Coupled Quantum Dot-Planar Photonic Crystal Structure |
QIAN Yong1, QIAN Jun2, WANG Yu-Zhu2 |
1Department of Modern Physics, University of Science and Technology of China, Hefei 2300262Key Laboratory for Quantum Optics, Center of Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 |
|
Cite this article: |
QIAN Yong, QIAN Jun, WANG Yu-Zhu 2009 Chin. Phys. Lett. 26 084203 |
|
|
Abstract We theoretically investigate controlled tunable all-optical filtering and buffering of optical pulses in a hybrid nano-photonic structure, where a single quantum dot (QD) embedded in a photonic crystal nanocavity is side-coupled between a bare nanocavity and a photonic crystal waveguide. We demonstrate that there is a sharp low-loss transmission peak in the transmission spectrum under even low QD-nanocavity coupling strength and the input optical pulses can be delayed up to several hundred picoseconds within the dephasing time of the QD. The filtering regime can be shifted readily by manipulating the detuning between the QD excitonic transition frequency and resonant frequency of the nanocavity mode, which can be explored in future for on-chip all-optical logic and signal processing.
|
Keywords:
42.50.Ct
42.70.Qs
78.67.Hc
|
|
Received: 02 April 2009
Published: 30 July 2009
|
|
PACS: |
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.70.Qs
|
(Photonic bandgap materials)
|
|
78.67.Hc
|
(Quantum dots)
|
|
|
|
|
[1] Boyd R W and Gauthier D J 2002 Prog. Opt.(Amsterdam: Elsevier) 43 497 [2] Harris S E 1997 Phys. Today 50 36 [3] Fleischhauer M, Imamo\v{glu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [4] Kash M M, Sautenkov V A, Zibrov A S, Hollberg L, Welch GR, Lukin M D, Rostovtsev Y, Fry E S and Scully M O 1999 Phys.Rev. Lett. E 82 5229 [5] Hau L V, Harris S E, Dutton Z and Behroozi C H 1999 Nature 397 594 [6] Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A,Ham B S and Hemmer P R 2002 Phys. Rev. Lett. E 88 023602 [7] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys.Rev. Lett. E 90 113903 [8] Th{\'evenaz L 2008 Nature Photon. 2 474 [9] Yariv A, Xu Y, Lee R K and Scherer A 1999 Opt. Lett. 24 711 [10] Kuhrgin J 2005 { J. Opt. Soc. Am. A 22 1062 [11] Noda S, Fujita M and Asano T 2007 Nature Photon. 1 449 [12] Tanaka Y, Upham J, Nagashima T, Sugiya T, Asano T andNoda S 2007 Nature Mater. 6 862 [13] Faraon A, Waks E, Englund D, Fushman I andVu\v{ckovi{\'c J 2007 Appl. Phys. Lett. 90 073102 [14] Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs HM, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200 [15] Hennessy K, Badolato A, Winger M, Gerace D, Atat{\"ureM, Gulde S, F{\"alt S, Hu E L and Imamo\v{glu A 2007 Nature 445 896 [16] Englund D, Faraon A, Zhang B Y, Yamamoto Y andVu\v{ckovi{\'c J 2007 Opt. Express 15 5550 [17] Fushman I, Englund D, Faraon A, Stoltz N, Petroff P andVu\v{ckovi{\'c J 2008 Science 320 769 [18] Walls D and G Milburn 1994 Quantum Optics (Berlin:Springer) [19] Waks E and Vu\v{ckovi{\'c J 2006 Phys. Rev. Lett.E 96 153601 [20] Faraon A, Fushman I, Englund D, Stoltz N, Petroff P andVu\v{ckovi{\'c J 2008 Opt. Express 16 12154 [21] Fushman I, Waks D, Englund D, Stoltz N, Petroff P andVu\v{ckovi{\'c J 2007 Appl. Phys. Lett. 90 091118 [22] Asakawa K et al 2006 New J. Phys. 8 208 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|