ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Bose-Einstein Condensates in a One-Dimensional Optical Lattice: from Superfluidity to Number-Squeezed States |
WANG Xiao-Rui1,2, YANG Lu1,2, TAN Xin-Zhou1,2, XIONG Hong-Wei1, LÜ Bao-Long1 |
1State key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 4300712Graduate School, Chinese Academy of Sciences, Beijing 100080 |
|
Cite this article: |
WANG Xiao-Rui, YANG Lu, TAN Xin-Zhou et al 2009 Chin. Phys. Lett. 26 083701 |
|
|
Abstract We study the phase coherence property of Bose-Einstein condensates confined in a one-dimensional optical lattice formed by a standing-wave laser field. The lattice depth is determined using a method of Kapitza-Dirac scattering between a condensate and a short pulse lattice potential. Condensates are then adiabatically loaded into the optical lattice. The phase coherence property of the confined condensates is reflected by the interference patterns of the expanded atomic cloud released from the optical lattice. For weak lattice, nearly all of the atoms stay in a superfluid state. However, as the lattice depth is increased, the phase coherence of the whole condensate sample is gradually lost, which confirms that the sub-condensates in each lattice well have evolved into number-squeezed states.
|
Keywords:
37.10.Jk
03.75.Gg
03.75.Nt
|
|
Received: 12 February 2009
Published: 30 July 2009
|
|
PACS: |
37.10.Jk
|
(Atoms in optical lattices)
|
|
03.75.Gg
|
(Entanglement and decoherence in Bose-Einstein condensates)
|
|
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
|
|
|
[1] Anderson B P and Kasevich M A 1998 Science 2821686 [2] Morsch O, M\"{uller J H, Cristiani M, Ciampini D andArimondo E 2001 Phys. Rev. Lett. 87 140402 [3] Cristiani M, Morsch O, M\"{uller J H, Ciampini D andArimondo E 2002 Phys. Rev. A 65 063612 [4] Stamper-Kurn D M, Chikkatur A P, G\"{orlitz A, Inouye S,Gupta S, Pritchard D E and Ketterle W 1999 Phys. Rev. Lett. 83 2876 [5] Steinhauer J, Ozeri K, Katz N and Davidson N 2002 Phys. Rev. Lett. 88 120407 [6] Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F,Trombettoni A, Smerzi A and Inguscio M 2001 Science 293843 [7] Orzel C, Tuchman A K, Fenselau M L, Yasuda M and KasevichM A 2001 Science 291 5512 [8] Greiner M, Mandel O, H\"{ansch T W and Bloch I 2002 Nature 415 39 [9] Greiner M, Mandel O, H\"{ansch T W and Bloch I 2002 Nature 419 51 [10] Kapitza P L and Dirac P A M 1933 Proc. Cam. Philos.Soc. 29 297 [11] Morsch O and Oberthaler M 2006 Rev. Mod. Phys 78 179 [12] Ovchinnikov Y B, M\"{uller J H, Doery M R, Vredenbregt EJ D, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev.Lett. 83 284 [13] Denschlag J H, Simsarian J E, McKenzie C and Phillips W D2002 J. Phys. B: At. Mol. Opt. Phys. 35 3095 [14] Sapiro R E, Zhang R and Raithel G 2009 New J. Phys. 11 013013 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|