GENERAL |
|
|
|
|
Darboux Transformation and Exact Solutions of the Myrzakulov-I Equation |
CHEN Chi, ZHOU Zi-Xiang |
School of Mathematical Sciences, Fudan University, Shanghai 200433Key Laboratory of Mathematics for Nonlinear Sciences of Ministry of Education, Fudan University, Shanghai 200433 |
|
Cite this article: |
CHEN Chi, ZHOU Zi-Xiang 2009 Chin. Phys. Lett. 26 080504 |
|
|
Abstract The Myrzakulov-I equation is a 2+1-dimensional generalization of the Heisenberg ferromagnetic equation and has a non-isospectral Lax pair. The Darboux transformation with non-constant spectral parameter is constructed and an extra constraint on the spectral parameter for the existence of the Darboux transformation is derived. Explicit expressions of the solutions of the Myrzakulov-I equation are presented.
|
Keywords:
05.45.Yv
02.30.Jr
|
|
Received: 30 March 2009
Published: 30 July 2009
|
|
|
|
|
|
[1] Myrzakulov R, Nugmanova G N and Syzdykova R N 1998 J.Phys. A: Math. Gen. 31 9535 [2] Zhang Z H, Deng M, Zhao W Z and Wu K 2006 J. Phys.Soc. Jpn. 75 104002 [3] Myrzakulov R, Vijayalakshmi S, Nugmanova G N andLakshmanan M 1997 Phys. Lett. A 233 391 [4] Martina L, Myrzakul Kur, Myrzakulov R and Soliani G 2001 J. Math. Phys. 42 1397 [5] Gu C H and Zhou Z X 1987 Lett. Math. Phys. 13179 [6] Cie\'sli\'nski J 1995 J. Math. Phys. 36 5670 [7] Ma W X 1997 Lett. Math. Phys. 39 33 [8] Gu C H, Hu H S and Zhou Z X 2006 DarbouxTransformations in Integrable Systems (Dordrecht: Springer) [9] Zhao S L, Zhang D J and Chen D Y 2009 Chin. Phys.Lett. 26 030202 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|