Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 080503    DOI: 10.1088/0256-307X/26/8/080503
GENERAL |
Construction of Third-Order Diagonal Implicit Runge-Kutta Methods for Stiff Problems
Osama Yusuf Ababneh, Rokiah@Rozita Ahmad
School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Cite this article:   
Osama Yusuf Ababneh, Rokiah@Rozita Ahmad 2009 Chin. Phys. Lett. 26 080503
Download: PDF(227KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We presents a new third-order diagonally implicit Runge-Kutta integration formula for stiff initial value problems, designed to be A-stable methods. The stability of the methods is analyzed and numerical results are shown to verify the conclusions.
Keywords: 05.45.-a      05.10.-a      05.45.Pq      02.30.Hq     
Received: 12 December 2008      Published: 30 July 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  02.30.Hq (Ordinary differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/080503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/080503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Osama Yusuf Ababneh
Rokiah@Rozita Ahmad
[1] Lambert J D 1973 (New York: John Wiley \& Sons) chap 10 p821
[2] Ricchard C. Aiken 1985 Oxford university press chap3 p 35
[3] Evans D J and Sanugi B B 1986 L.U.T. Computer StudyReports p 281
[4] Wazwaz A M 1990 Appl. Math. Lett. 3 123
[5] Wolfram S 1991 2nd edn (Cambridge: Addison-Wesley)
[6] Butcher J C 1987 (New York: John Wiley \& Sons) chap 2 p35
[7] Cooper G J and Sayfy A 1979 Mathematics ofComputation 33 541
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 080503
[7] MEI Li-Jie,WU Xin**,LIU Fu-Yao. A New Class of Scaling Correction Methods[J]. Chin. Phys. Lett., 2012, 29(5): 080503
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 080503
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 080503
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 080503
[11] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 080503
[12] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 080503
[13] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 080503
[14] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 080503
[15] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 080503
Viewed
Full text


Abstract