Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 080501    DOI: 10.1088/0256-307X/26/8/080501
GENERAL |
Bifurcation of a Saddle-Node Limit Cycle with Homoclinic Orbits Satisfying the Small Lobe Condition in a Leech Neuron Model
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua
Institute of Nonlinear Dynamics, Xi'an Jiaotong University, Xi'an 710049
Cite this article:   
YOOER Chi-Feng, XU Jian-Xue, ZHANG Xin-Hua 2009 Chin. Phys. Lett. 26 080501
Download: PDF(281KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Mechanism of period-adding cascades with chaos in a reduced leech neuron model is suggested as the bifurcation of a saddle-node limit cycle with homoclinic orbits satisfying the ``small lobe condition'', instead of the blue-sky catastrophe. In every spiking adding, the new spike emerges at the end of the spiking phase of the bursters.
Keywords: 05.45.-a      87.19.L-      02.30.Oz     
Received: 20 November 2008      Published: 30 July 2009
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.L- (Neuroscience)  
  02.30.Oz (Bifurcation theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/080501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YOOER Chi-Feng
XU Jian-Xue
ZHANG Xin-Hua
[1] Ren W et al 1997 Int. J. Bifurcat. Chaos 71867
[2] Holden A V and Fan Y 1992 Chaos Soliton. Fract. 2 221
[3] Holden A V and Fan Y 1992 Chaos Soliton. Fract. 2 349
[4] Holden A V and Fan Y 1992 Chaos Soliton. Fract. 2 583
[5] He D R, Yen W J and Kao Y H 1985 Phys. Rev. B 31 1359
[6] Pei L, Guo F and Wu S 1986 IEEE Trans. Cir. Sys. 33 438
[7] Aroudi A E et al 2000 Int. J. Bifurcat. Chaos 10 359
[8] Straube R et al 2005 Phys. Rev. E 72 066205
[9] Elnashaie S and Ajbar A 1996 Chaos Soliton. Fract. 7 1317
[10] Elnashaie S et al 2001 Chaos Soliton. Fract. 12 1761
[11] Bonatto C and Gallas J A C 2007 Phys. Rev. E 75 055204
[12] Krauskopf B and Wieczorek S 2002 Physica D 173 97
[13] Tanaka G et al 2003 Int. J. Bifurcat. Chaos 13 3409
[14] Mosekilde E et al 2001 BioSystems 63 3
[15] Ananthakrishna G 2007 Phys. Rep. 440 113
[16] Lopez J M and Marques F 2005 Physica D 211168
[17] Neubert M G and Caswell H 2000 J. Math. Bio. 41 103
[18] Shilnikov L P 1965 Sov. Math. Dokl. 6 163
[19] Shilnikov L P 1970 Math. USSR-Sb 10 91
[20] Gavrilov N K and Shilnikov L P 1972 Math. USSR-Sb 17 467
[21] Gavrilov N K and Shilnikov L P 1973 Math. USSR-Sb 19 139
[22] Koper M T M 1995 Physica D 80 72
[23] Kuznetsov Y A 2004 Elements of Applied BifurcationTheory (New York: Springer)
[24] Wiggins S 2003 Introduction to Applied NonlinearDynamical systems and Chaos (New York: Springer)
[25] Cymbalyuk G S, Gaudry Q, Masino M A, and Calabrese R L2002 J. Neurosci. 22 24
[26] Hill A, Lu J, Masino M, Olsen O and Calabrese R L 2001 J. Comput. Neurosci. 10 281
[27] Cymbalyuk G S and Calabrese R L 2001 Neurocomputing 38 159
[28] Shilnikov A and Cymbalyuk G 2005 Phys. Rev. Lett. 94 048101
[29] Shilnikov A L, Calabrese R and Cymbalyuk G 2005 Phys. Rev. E 71 056214
[30] Channell P, Cymbalyuk G and Shilnikov A 2007 Phys.Rev. Lett. 98 134101
[31] Doedel E J 2009 AUTO-07P: Continuation andBifurcation Software for Ordinary Differential Equations
[32] Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 070504
[33] Afraimovich V et al 1974 Sov. Math. Dokl. 151761
[34] Turaev D V et al 1987 Sov. Math. Dokl. 34 397
[35] Shilnikov L P et al 2001 Methods of QualitativeTheory in Nonlinear Dynamics (Singapore: World Scientific) p 2
[36] Terman D 1991 SIAM J. Appl. Math. 51 1418
[37] Terman D 1992 J. Nonlin. Sci. 2 135
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[7] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 080501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 080501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 080501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 080501
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 080501
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 080501
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 080501
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 080501
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 080501
Viewed
Full text


Abstract