Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 080302    DOI: 10.1088/0256-307X/26/8/080302
GENERAL |
Polaron in Bose-Einstein-Condensation System
HUANG Bei-Bing, WAN Shao-Long
Institute for Theoretical Physics and Department of Modern Physics University of Science and Technology of China, Hefei 230026
Cite this article:   
HUANG Bei-Bing, WAN Shao-Long 2009 Chin. Phys. Lett. 26 080302
Download: PDF(293KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider the motion of an impurity in a Bose-Einstein condensate system at T=0K with the contact interactions for boson-boson and boson-impurity. Under the forward-scattering approximation, we obtain a Frohlich-like Hamiltonian for this system, which means that a polaron can be formed. The effective mass, the phonon number and the energy to form a polaron are obtained. We also discuss the validity of the forward-scattering approximation for this system.
Keywords: 03.75.Hh      05.30.Jp      67.85.Bc     
Received: 14 May 2009      Published: 30 July 2009
PACS:  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  05.30.Jp (Boson systems)  
  67.85.Bc (Static properties of condensates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/080302       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/080302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Bei-Bing
WAN Shao-Long
[1] Lamacraft A 2008 Phys. Rev. Lett. 101 225301
[2] Wang K L et al 1996 Phys. Rev. B 54 12852
[3] Chen Q H et al 1996 Phys. Rev. B 53 11296
[4] Anderson M H et al 1995 Science 269 198
[5] Davis K B et al 1995 Phys. Rev. Lett. 75 3969
[6] Bradley C C et al 1997 Phys. Rev. Lett. 78 985
[7] Truscott A G et al 2001 Science 291 2570
[8] Chikkatur A P et al 2000 Phys. Rev. Lett. 85483
[9] Hadzibabic Z et al 2002 Phys. Rev. Lett. 88160401
[10] Roati G et al 2002 Phys. Rev. Lett. 89 150403
[11] Myatt C J et al 1997 Phys. Rev. Lett. 78 586
[12] Schreck F et al 2001 Phys. Rev. A 64 011402
[13] Cucchietti F M and Timmermans E 2006 Phys. Rev.Lett. 96 210401
[14] Kalas R M and Blume D 2006 Phys. Rev. A 73043608
[15] Sacha K and Timmermans E 2006 Phys. Rev. A 73063604
[16] Landau L D 1933 Phys. Z. Sowjetunion 3 644
[17] Pekar S I 1946 Zh. Eksp. Teor. Fiz. 16 335
[18] Oosten D V et al 2001 Phys. Rev. A 63 053601
[19] Goldstone J 1961 Nuovo Cimento 19 154
[20] Fr\"{ohlich H 1954 Adv. Phys. 3 325
[21] Fr\"{ohlich H 1950 Phys. Rev. 79 845
[22] Lee T D et al 1953 Phys. Rev. 90 297
[23] Landau L D 1941 J. Phys. (Moscow) 5 71
[24] Timmermans E and C\^{ot\'{e R 1998 Phys. Rev.Lett. 80 3419
[25] Fetter A L and Walecka J D 1971 Quantum Theory ofMany-Particle System (New York: McGraw-Hill) chap 10 p 314
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 080302
[2] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 080302
[3] WEI Bo-Bo* . One-Dimensional w-Component Fermions and Bosons with Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(9): 080302
[4] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 080302
[5] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 080302
[6] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 080302
[7] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 080302
[8] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 080302
[9] C. N. YANG, **, YOU Yi-Zhuang . One-Dimensional w-Component Fermions and Bosons with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2011, 28(2): 080302
[10] HAO Ya-Jiang . Ground State Density Distribution of Bose-Fermi Mixture in a One-Dimensional Harmonic Trap[J]. Chin. Phys. Lett., 2011, 28(1): 080302
[11] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 080302
[12] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 080302
[13] MA Zhong-Qi, C. N. Yang,. Spin 1/2 Fermions in 1D Harmonic Trap with Repulsive Delta Function Interparticle Interaction[J]. Chin. Phys. Lett., 2010, 27(8): 080302
[14] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 080302
[15] ZHANG Wen-Yuan, WANG Cheng-Tao, MA Yong-Li. Unitarity Schrödinger Equation and Ground State Properties of the Finite Trapped Superfluid Fermi Gases in a BCS-BEC Crossover[J]. Chin. Phys. Lett., 2010, 27(4): 080302
Viewed
Full text


Abstract