Chin. Phys. Lett.  2009, Vol. 26 Issue (8): 080201    DOI: 10.1088/0256-307X/26/8/080201
GENERAL |
Geometric Approach to Lie Symmetry of Discrete Time Toda Equation
JIA Xiao-Yu1, WANG Na2
1School of Mathematical Sciences, Capital Normal University, Beijing 1000372Department of Information Engineering, Henan College of Finance and Taxation, Zhengzhou 450002
Cite this article:   
JIA Xiao-Yu, WANG Na 2009 Chin. Phys. Lett. 26 080201
Download: PDF(178KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using the extended Harrison and Estabrook geometric approach, we investigate the Lie symmetry of discrete time Toda equation from the geometric point of view. Its one-dimensional continuous symmetry group is presented.
Keywords: 02.20.Sv      02.30.Jr      02.40.-k     
Received: 25 February 2009      Published: 30 July 2009
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  
  02.40.-k (Geometry, differential geometry, and topology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/8/080201       OR      https://cpl.iphy.ac.cn/Y2009/V26/I8/080201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Xiao-Yu
WANG Na
[1] Harrison B K and Estabrook F B 1971 J. Math. Phys. 12 653
[2] Li H J, Wang D S, Wang S K, Wu K and Zhao W Z 2008 Phys. Lett. A 372 5878
[3] Guo H Y, Wu K and Zhang W 2000 Commun. Theor. Phys. 34 245
[4] Wu K, Zhao W Z and Guo H Y 2006 Sci. Chin. A 49 1458
[5] Levi D and Winternitz P 1991 Phys. Lett. A 152335
[6] Levi D and Winternitz P 2006 J. Phys. A 39 R1
[7] Hirota R 1977 J. Phys. Soc. Jpn 43 2074
[8] Levi D 2008 Lie Symmetries of Differential andDifference Equations (Beijing: CCAST-WL Workshop)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 080201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 080201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 080201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 080201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 080201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 080201
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 080201
[8] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 080201
[9] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 080201
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 080201
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 080201
[12] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 080201
[13] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 080201
[14] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 080201
[15] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 080201
Viewed
Full text


Abstract