Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070305    DOI: 10.1088/0256-307X/26/7/070305
GENERAL |
Proof of Kochen-Specker Theorem: Conversion of Product Rule to Sum Rule
S.P.Toh1,2, Hishamuddin Zainuddin2
1Faculty of Applied Science, Inti International University College, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia2Laboratory of Computational Science and Informatics, Institute for Mathematical Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Cite this article:   
S.P.Toh, Hishamuddin Zainuddin 2009 Chin. Phys. Lett. 26 070305
Download: PDF(156KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Valuation functions of observables in quantum mechanics are often expected to obey two constraints called the sum rule and product rule. However, the Kochen-Specker (KS) theorem shows that for a Hilbert space of quantum mechanics of dimension d≥3, these constraints contradict individually with the assumption of value definiteness. The two rules are not irrelated and Peres [Found. Phys. 26(1996)807] has conceived a method of converting the product rule into a sum rule for the case of two qubits. Here we apply this method to a proof provided by Mermin based on the product rule for a three-qubit system involving nine operators. We provide the conversion of this proof to one based on sum rule involving ten operators.
Keywords: 03.65.Ta     
Received: 31 March 2009      Published: 02 July 2009
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070305       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S.P.Toh
Hishamuddin Zainuddin
[1] Held C 2008 Stanford Encyclopedia of Philosophy URLhttp://plato.stanford.edu/archives/win2008/entries/kochen-specker/
[2] Peres A 1996 Found. Phys. 26 807
[3] Mermin N D 1993 Rev. Mod. Phys. 65 803
Related articles from Frontiers Journals
[1] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 070305
[2] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 070305
[3] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 070305
[4] YAN Jun-Yan**, WANG Lin-Cheng, YI Xue-Xi . Sudden Transition between Quantum Correlation and Classical Correlation: the Effect of Interaction between Subsystems[J]. Chin. Phys. Lett., 2011, 28(6): 070305
[5] TANG Jian-Shun, LI Yu-Long, LI Chuan-Feng**, XU Jin-Shi, CHEN Geng, ZOU Yang, ZHOU Zong-Quan, GUO Guang-Can . Experimental Violation of Multiple-Measurement Time-Domain Bell's Inequalities[J]. Chin. Phys. Lett., 2011, 28(6): 070305
[6] XU Guo-Fu**, TONG Dian-Min . Non-Markovian Effect on the Classical and Quantum Correlations[J]. Chin. Phys. Lett., 2011, 28(6): 070305
[7] LI Chuan-Feng**, WANG Hao-Tian, YUAN Hong-Yuan, GE Rong-Chun, GUO Guang-Can . Non-Markovian Dynamics of Quantum and Classical Correlations in the Presence of System-Bath Coherence[J]. Chin. Phys. Lett., 2011, 28(12): 070305
[8] SHEN Yao, HAO Liang, LONG Gui-Lu** . Why Can We Copy Classical Information?[J]. Chin. Phys. Lett., 2011, 28(1): 070305
[9] Salman Khan, M. Ramzan, M. K. Khan. Quantum Model of Bertrand Duopoly[J]. Chin. Phys. Lett., 2010, 27(8): 070305
[10] SUN Chun-Xiao, SHI Ming-Jun, DU Jiang-Feng. Correlations Existing in Three-Qubit Product States[J]. Chin. Phys. Lett., 2010, 27(4): 070305
[11] PAN Chang-Ning, ZHANG Jun-Xiang, ZHAO Xue-Hui. The n-Qubit W State of Ground-State Atoms Using Cavity QED and Single Photon Detection[J]. Chin. Phys. Lett., 2010, 27(3): 070305
[12] LUO Shun-Long, LI Nan . Quantum Correlations Reduce Classical Correlations with Ancillary Systems[J]. Chin. Phys. Lett., 2010, 27(12): 070305
[13] XIANG Yang . Maximal Violation of Bell Inequality for Any Given Two-Qubit Pure State[J]. Chin. Phys. Lett., 2010, 27(12): 070305
[14] XU Xu, ZHOU Xiao-Ji. Phase-Dependent Effects in Stern-Gerlach Experiments[J]. Chin. Phys. Lett., 2010, 27(1): 070305
[15] JIANG Ming-Ming, YU Si-Xia. Generators for Symmetric Universal Quantum Cloning Machines[J]. Chin. Phys. Lett., 2010, 27(1): 070305
Viewed
Full text


Abstract