Chin. Phys. Lett.  2009, Vol. 26 Issue (7): 070304    DOI: 10.1088/0256-307X/26/7/070304
GENERAL |
First and Second Sound Modes in a Uniform Fermi Gas
HUANG Bei-Bing, WAN Shao-Long
Institute for Theoretical Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
HUANG Bei-Bing, WAN Shao-Long 2009 Chin. Phys. Lett. 26 070304
Download: PDF(297KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract First and second sound modes in a uniform fermionic atom gas with Feshbach resonance are investigated in the frame of a two-fluid model at finite temperature. All thermodynamic quantities are calculated for a given thermodynamic potential. The analytical results for thermodynamic quantities and sound velocities in BCS and BEC limits are obtained. The numerical results show that there exists a continuous interpolation for sound velocities of the first and second sound modes at fixed T/Tc between BCS and BEC limits. The existence of the second sound mode indicates the existence of superfluidity.
Keywords: 03.75.Kk      03.75.Ss      74.20.Mn     
Received: 05 February 2009      Published: 02 July 2009
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Ss (Degenerate Fermi gases)  
  74.20.Mn (Nonconventional mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/7/070304       OR      https://cpl.iphy.ac.cn/Y2009/V26/I7/070304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Bei-Bing
WAN Shao-Long
[1] Kinast J et al 2004 Phys. Rev. Lett. 92 150402
[2] Bartenstein M et al 2004 Phys. Rev. Lett. 92203201
[3] Chin C et al 2004 Science 305 1128
[4] Tisza L 1928 Nature 141 913
[5] Landau L D 1941 J. Phys. (USSR) 5 71
[6] Landau L D 1944 J. Phys. (USSR) 8 1
[7] Fetter A L and Walecka J D 1971 Quantum Theory ofMany-Particle Systems (San Frandisco: McGraw-Hill) chap 14 p 481
[8] Holland M et al 2001 Phys. Rev. Lett. 87120406
[9] Engelbrecht J R et al 1997 Phys. Rev. B 5515153
[10] Chen Q J et al 2005 Phys. Rep. 412 1
[11] Chen Q J et al 2006 Low Temp. Phys. 32 406
[16] Heiselberg H 2006 Phys. Rev. A 73 013607
[17] He Y et al 2007 Phys. Rev. A 76 051602(R)
[18] Heiselberg H 2004 Phys. Rev. Lett. 93 040402
[19] Hu H et al 2004 Phys. Rev. Lett. 93 190403
[20] Thomas J E et al 2005 Phys. Rev. Lett. 95120402
[21] Pethick C J and Smith H 2002 Bose-EinsteinCondensation in Dilute Gases (Cambridge: Cambridge University) chap10 p 273
[22] Landau L D and Lifshitz E M 1987 Fluid Mechanics(New York: Pergamon) chap 16 p 518
[23] Huang B B and Wan S L 2007 Phys. Rev. A 75053608
[24] Ghosh T K and Machida K 2006 Phys. Rev. A 73013613
[25] Ohashi Y and Griffin A 2003 Phys. Rev. A 67063612
[26] Zhou Y et al. 2006 Chin. Phys. Lett. 23 2662
[27] Taylor E et al 2006 Phys. Rev. A 74 063626
[28] Chien C C et al 2007 Phys. Rev. Lett. 98110404
[29] Chen Q J et al 1998 Phys. Rev. Lett. 81 4708
[30] Ho T L 2004 Phys. Rev. Lett. 92 090402
[31] Astrakharchik G E et al 2004 Phys. Rev. Lett. 93 200404
[32] Petrov D S et al 2004 Phys. Rev. Lett. 93090404
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 070304
[2] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 070304
[3] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 070304
[4] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 070304
[5] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 070304
[6] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 070304
[7] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 070304
[8] LUO Xiao-Bing, XIA Xiu-Wen, ZHANG Xiao-Fei,. Suppression of Chaos in a Bose-Einstein Condensate Loaded into a Moving Optical Superlattice Potential[J]. Chin. Phys. Lett., 2010, 27(4): 070304
[9] ZHANG Wen-Yuan, WANG Cheng-Tao, MA Yong-Li. Unitarity Schrödinger Equation and Ground State Properties of the Finite Trapped Superfluid Fermi Gases in a BCS-BEC Crossover[J]. Chin. Phys. Lett., 2010, 27(4): 070304
[10] LI Hao-Cai, CHEN Hai-Jun, XUE Ju-Kui. Bose--Einstein Condensates with Two- and Three-Body Interactions in an Anharmonic Trap at Finite Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 070304
[11] XU Zhen, DUAN Ya-Fan, ZHOU Shu-Yu, HONG Tao, WANG Yu-Zhu. Effects of Atom-Atom Interaction on Localization and Adiabaticity of BEC in One-Dimensional Disorder Optical Lattice[J]. Chin. Phys. Lett., 2009, 26(9): 070304
[12] XUE Rui, LIANG Zhao-Xin, LI Wei-Dong. Stability Diagrams of a Bose-Einstein Condensate in a Periodic Array of Quantum Wells[J]. Chin. Phys. Lett., 2009, 26(7): 070304
[13] YANG Lu, WANG Xiao-Rui, LI Ke, TAN Xin-Zhou, XIONG Hong-Wei, LU Bao-Long. Low-Energy Collective Excitation of Bose-Einstein Condensates in an Anisotropic Magnetic Trap[J]. Chin. Phys. Lett., 2009, 26(7): 070304
[14] XU Jun, LUO Xiao-Bing. Controlling Chaos Probability of a Bose-Einstein Condensate in a Weak Optical Superlattice[J]. Chin. Phys. Lett., 2009, 26(4): 070304
[15] SUN Hui-Ying, HUANG Xiao-Li, YI Xue Xi. Dynamical Evolution and Entanglement in a Nonlinear Interacting System[J]. Chin. Phys. Lett., 2009, 26(2): 070304
Viewed
Full text


Abstract