Chin. Phys. Lett.  2009, Vol. 26 Issue (6): 067301    DOI: 10.1088/0256-307X/26/6/067301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electrical Characteristics of Co/n-Si Schottky Barrier Diodes Using I-V and C-V Measurements
G. Güler1, Ö. Güllü2, S. Karatas3, Ö. F. Bakkaloglu4
1Department of Physics, Faculty of Education University of Adiyaman, 02100 Adiyaman, Turkey2Department of Physics, Faculty of Sciences and Arts, University of Batman, 72060 Batman, Turkey3Department of Physics, Faculty of Sciences and Arts, University of Kahramanmaras Sütcü .Imam, 46100 Kahramanmaras Turkey4Department of Engineering Physics, Faculty of Engineering Physics, University of Gaziantep, 27310 Gaziantep, Turkey
Cite this article:   
G. Güler, Ö, . Güllü et al  2009 Chin. Phys. Lett. 26 067301
Download: PDF(313KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Electrical characteristics of Co/n-Si Schottky barrier diodes are analysed by current-voltage (I-V) and capacitance-voltage (C-V) techniques at room temperature. The electronic parameters such as ideality factor, barrier height and average series resistance are determined. The barrier height 0.76eV obtained from the C-V measurements is higher than that of the value 0.70eV obtained from the I-V measurements. The series resistance RS and the ideality factor n are determined from the d\ln(I)/dV plot and are found to be 193.62Ω and 1.34, respectively. The barrier height and the RS value are calculated from the H(I)-I plot and are found to be 0.71eV and 205.95Ω. Furthermore, the energy distribution of the interface state density is determined from the forward bias I-V characteristics by taking into account the bias dependence of the effective barrier height. The interface state density Nss ranges from 6.484×1011cm-2eV-1 in (EC-0.446)eV to 2.801×1010cm-2eV-1 in (EC-0.631,eV, of the Co/n-Si Schottky barrier diode. The results show the presence of a thin interfacial layer between the metal and the semiconductor.
Keywords: 73.30.+y      73.40.-c      73.40.Ei     
Received: 14 July 2008      Published: 01 June 2009
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.-c (Electronic transport in interface structures)  
  73.40.Ei (Rectification)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/6/067301       OR      https://cpl.iphy.ac.cn/Y2009/V26/I6/067301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
G. Güler
Ö
. Güllü
S. Karatas
Ö
. F. Bakkaloglu
[1] Tyagi M S 1991 Introduction to SemiconductorMaterials and Devices (New York: John Wiley)
[2] Kwok K K 1995 Complete Guide to SemiconductorDevices (New York: McGraw-Hill)
[3] Sze SM 1981 Physics of Semiconductor Devices (NewYork: Wiley) chap 3 p 135
[4]Rhoderick E H and Williams R H 1988 Metal-Semiconductor Barrier Diodes (Oxford: Clarendon)
[5] Karatas S and Alt{\indal S 2005 Mat.Sci. Eng. B 122 133
[6] Karatas S 2005 Solid State Cuumun. 135 500
[7] Aydin M E, Yakuphanoglu F, Eom J H and Hwang D H 2007 Physica B 387 239
[8] Tung R T 2001 Mater. Sci. Eng. R 35 1
[9] Brillson L J 1982 Sur. Sci. Rep. 2 123
[10] Morita M et al 1990 J. Appl. Phys. 68 1272
[11] Hanselaer P et al 1984 Appl. Phys. 56 2309
[12] Hanselaer P et al 1986 Appl. Phys. A 39 129
[13] Cova P and Singh A 1990 Solid State Electron. 33 11
[14] Karatas S et al 2005 Solid State Electron. 49 1052
[15] Akk{\il{\ic K et al 2007 Synth. Metals 157 297
[16] Kiziroglou M E et al 2005 IEEE Trans. Magn. 41 2639
[17] Zaman H et al 1997 IEEE Trans. Magn. 33 3517
[18] G\"uler G et al 2009 J. Phys: Conference Series 153 012054
[19] G\"uler G et al 2008 Physica B 403 2211
[20] Cheung S K et al 1986 Appl. Phys. Lett. 49 85
[21] Werner J H 1988 Appl. Phys. A 47 291
[22] Werner J H and Rau U 1994 Springer Series inElectronics and Photonics ed Luyand J F and Russer P (Berlin:Springer) p 32
[23] Siad M et al 2004 Appl. Sur. Sci. 236 366
[24] Forment S et al 2001 Semicond. Sci. Technol. 16 975
[25] Card J C and Rhoderick E H 1971 J. Phys. D 41589
Related articles from Frontiers Journals
[1] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 067301
[2] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 067301
[3] QIN Yu-Feng, YAN Shi-Shen, KANG Shi-Shou, XIAO Shu-Qin, LI Qiang, DAI Zheng-Kun, SHEN Ting-Ting, DAI You-Yong**, LIU Guo-Lei, CHEN Yan-Xue, MEI Liang-Mo, ZHANG Ze . Electric and Magnetic Field Tunable Rectification and Magnetoresistance in FexGe1−x/Ge Heterojunction Diodes[J]. Chin. Phys. Lett., 2011, 28(10): 067301
[4] HAO Lan-Zhong, **, LIU Yun-Jie, ZHU Jun**, LEI Hua-Wei, LIU Ying-Ying, TANG Zheng-Yu, ZHANG Ying, ZHANG Wan-Li, LI Yan-Rong . Rectifying the Current−Voltage Characteristics of a LiNbO3 Film/GaN Heterojunction[J]. Chin. Phys. Lett., 2011, 28(10): 067301
[5] Attia A. Awadalla, Adel H. Phillips** . Thermal Shot Noise through Boundary Roughness of Carbon Nanotube Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(1): 067301
[6] WAN Lang-Hui, YU Yun-Jin, WANG Bin. Spin Filter of Graphene Nanoribbon Based Structure[J]. Chin. Phys. Lett., 2010, 27(8): 067301
[7] CHENG Xiao-Man, , HU Zi-Yang, , WU Ren-Lei, , WANG Zhong-Qiang, , YIN Shou-Gen,. Fabrication and Characterization of C60-Based Organic Schottky Diodes[J]. Chin. Phys. Lett., 2010, 27(1): 067301
[8] AN Xia, FAN Chun-Hui, HUANG Ru, ZHANG Xing. Schottky Barrier Height Modulation of Nickel Germanide Schottky Diodes by the Germanidation-Induced Dopant Segregation Technique[J]. Chin. Phys. Lett., 2009, 26(8): 067301
[9] ZHAO De-Gang, JIANG De-Sheng, LIU Zong-Shun, ZHU Jian-Jun, WANG Hui, ZHANG Shu-Ming, YANG Hui,. An Anomalous Gain Mechanism in GaN Schottky Barrier Ultraviolet Photodetectors[J]. Chin. Phys. Lett., 2009, 26(5): 067301
[10] GENG Li, MAGYARI-KOPE Blanka, ZHANG Zhi-Yong, NISHI Yoshio. Fermi Level Unpinning and Schottky Barrier Modification by Ti, Sc and V Incorporation at NiSi2/Si Interface[J]. Chin. Phys. Lett., 2009, 26(3): 067301
[11] HU Zi-Yang, CHENG Xiao-Man, , WU Ren-Lei, WANG Zhong-Qiang, YIN Shou-Gen,. Performance of Organic Field Effect Transistors with Self-Improved Cu/Organic Interfaces[J]. Chin. Phys. Lett., 2009, 26(3): 067301
[12] CHEN Yuan-Sha, CHEN Li-Ping, LIAN Gui-Jun, XIONG Guang-Cheng. Resistance Switching Characteristic and Charge Carrier Self-Trapping in Epitaxial Pr0.7(Ca1-xSrx)0.3MnO3 Thin Films[J]. Chin. Phys. Lett., 2009, 26(3): 067301
[13] JIANG An-Quan, TANG Ting-Ao. Correlation between Imprint and Long-Time Polarization Reversal under Low Fields in Ferroelectric Thin Films[J]. Chin. Phys. Lett., 2009, 26(1): 067301
[14] SONG Jiu-Xu, YANG Yin-Tang, CHAI Chang-Chun, LIU Hong-Xia, DING Rui-Xue. Electronic Transport Properties of (7,0) Semiconducting Carbon Nanotube[J]. Chin. Phys. Lett., 2008, 25(9): 067301
[15] DONG Gui-Fang, LIU Qing-Di, WANG Li-Duo, QIU Yong. Variation of Different Characteristic Parameters of Pentacene/Poly(Methyl Methacrylate) Transistors under Electric Stress[J]. Chin. Phys. Lett., 2008, 25(9): 067301
Viewed
Full text


Abstract