Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 059401    DOI: 10.1088/0256-307X/26/5/059401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Dynamic Processes of Cross-Tail Current in the Near-Earth Magnetotail
LU Xing-Qiang1, MA Zhi-Wei1,2
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 2300312Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027
Cite this article:   
LU Xing-Qiang, MA Zhi-Wei 2009 Chin. Phys. Lett. 26 059401
Download: PDF(291KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Current dynamic processes in realistic magnetotail geometry are studied by Hall magnetohydrodynamic (MHD) simulations under various driven conditions and Hall effects. Associated with the external driving force, a thin current sheet with a broad extent is built up in the near-Earth magnetotail. The time evolution for the formation of the current sheet comprises two phases: slow growth and a fast impulsive phase before the near-Earth disruption of the current sheet resulting from the fast magnetic reconnection. The simulation results indicate that as the external driving force increases, the site and the tailward speed of the near-Earth current disruption region are closer to the Earth and faster, respectively. Whether the near-Earth disruption of the current sheet takes place or not is mainly controlled by Hall effects. It is found that there is no sudden disruption of the current sheet in the near-Earth region if the ion inertial length is below di=0.04.
Keywords: 94.30.Lr      94.30.C-      94.30.Cp     
Received: 30 October 2008      Published: 23 April 2009
PACS:  94.30.Lr (Magnetic storms, substorms)  
  94.30.C- (Magnetospheric configuration and dynamics)  
  94.30.cp (Magnetic reconnection)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/059401       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/059401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Xing-Qiang
MA Zhi-Wei
[1] Kaufmann R L 1987 J. of Geophys. Res. 92 7471
[2] Lui A T Y 2003 Plasma Phys. Control. Fusion. 45 841
[3] Ohtani S, Takahashi K, Zanetti L J, Potemra T A et al 1992 J. Geophys. Res. 97 19331
[4] Bhattacharjee A, Ma Z W and Wang X G 1998 Geophys.Res. Lett. 25 861
[5] Ma Z W, Bhattacharjee A 1998 Geophys. Res. Lett. 25 3277
[6] Ma Z W, Bhattacharjee A 1999 Geophys. Res. Lett. 26 3337
[7] Ma Z W, Wang X G and Bhattacharjee A 1995 Geophys.Res. Lett. 22 2985
[8] Nishida A and Nagayama N 1973 J. Geophys. Res. 78 3782
[9] Ohtani S, Kokubun S, Elphic R C and Russell C T 1988 J. Geophys. Res. 93 9709
[10] Lui A T Y, Lopez R E, Anderson B J et al 1992 J.Geophys. Res. 97 1461
[11] Ohtani S, Kokubun S and Russell C T 1992 Geophys.Res. Lett. 97 3129
[12] Ma Z W 2008 Phys. Plasmas. 15 032906
[13] Lui A T Y, Volwerk M et al 2008 J. Geophys. Res. 113 A07S26
[14] Birn J, Hesse M and Schindler K 1996 J. Geophys.Res. 101 12939
[15] Vaivads A, Khotyaintsev Y, Andre M et al 2004 Geophys. Res. Lett. 93 105001
[16] Xiao C J, Wang X, Pu Z Y et al 2007 Geophys. Res.Lett. 34 L01101
[17] Wang X, Yang H A and Jin S P 2006 Phys. Plasmas. 13 060702
[18] Tsyganenko N A 1989 Planet. Space Sci. 37 5
[19] Sergeev V A, Mitchell D G, Russell C T and Williams D J1993 J. Geophys. Res. 98 17345
[20] Lee L C, Zhang L, Choe G S and Cai H J 1995 Geophys.Res. Lett. 22 1137
[21] Asano Y, Mukai T, Hoshino M, Saito Y, Hayakawa H andNagai T 2003 J. Geophys. Res. 108 1189
[22] Jin S P, Hue X P, Zong Q G, Fu S Y, Wilken B andBfichnexr J 2001 J. Geophys. Res. 106 29807
Related articles from Frontiers Journals
[1] CHENG Zheng-Wei**, SHI Jian-Kui, ZHANG Tie-Long, WANG Sheng-Guo, LIU Zhen-Xing . Field-Aligned Currents at the PSBL on 17 August 2001 Storm: Relationships with solar Wind Conditions[J]. Chin. Phys. Lett., 2011, 28(9): 059401
[2] TANG Chao-Ling** . The Wave-Like Auroral Structure around Auroral Expansion Onset[J]. Chin. Phys. Lett., 2011, 28(10): 059401
[3] ZHOU Meng, **, HUANG Shi-Yong, DENG Xiao-Hua, PANG Ye, . Observation of a Sharp Negative Dipolarization Front in the Reconnection Outflow Region[J]. Chin. Phys. Lett., 2011, 28(10): 059401
[4] ZHOU Qing-Hua, HE Yi-Hua, HE Zhao-Guo, YANG Chang. Propagation Characteristics of Whistler-Mode Chorus during Geomagnetic Activities[J]. Chin. Phys. Lett., 2010, 27(5): 059401
[5] WEI Xin-Hua, CAO Jin-Bin, ZHOU Guo-Cheng, FU Hui-Shan,. Is the Near-Earth Current Sheet Prior to Reconnection Unstable to Tearing Mode?[J]. Chin. Phys. Lett., 2010, 27(2): 059401
[6] MA Zhi-Wei, LU Xing-Qiang. An Island Coalescence Scenario for Near-Earth Current Disruption in the Magnetotail[J]. Chin. Phys. Lett., 2009, 26(8): 059401
[7] XIAO Fu-Liang, TIAN Tian, CHEN Liang-Xu. Bounce-averaged Pitch-angle Diffusion by Electromagnetic Ion Cyclotron Waves in Multi-ion Plasmas[J]. Chin. Phys. Lett., 2009, 26(5): 059401
[8] SU Zhen-Peng, ZHENG Hui-Nan, XIONG Ming. Dynamic Evolution of Outer Radiation Belt Electrons due to Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2009, 26(3): 059401
[9] SU Zhen-Peng, ZHENG Hui-Nan. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves[J]. Chin. Phys. Lett., 2009, 26(12): 059401
[10] HE Hui-Yong, CHEN Liang-Xu, LI Jiang-Fan. Characteristics of Wave--Particle Interaction in a Hydrogen Plasma[J]. Chin. Phys. Lett., 2008, 25(9): 059401
[11] ZHENG Hui-Nan, SU Zhen-Peng, XIONG Ming. Pitch Angle Distribution Evolution of Energetic Electrons by Whistler-Mode Chorus[J]. Chin. Phys. Lett., 2008, 25(9): 059401
[12] WANG Rong-Sheng, LU Quan-Ming, GUO Jun, WANG Shui. Spatial Distribution of Energetic Electrons during Magnetic Reconnection[J]. Chin. Phys. Lett., 2008, 25(8): 059401
[13] GUO Fan, LU Quan-Ming, GUO Jun, WANG Shui. Nonlinear Evolution of Lower-Hybrid Drift Instability in Harris Current Sheet[J]. Chin. Phys. Lett., 2008, 25(7): 059401
[14] GUO Jian-Guang, SHI Jian-Kui, ZHANG Tie-Long, LIU Zhen-Xing. Interhemispheric Comparison of Dipole Tilt Angle Effects on Latitude of Mid-Altitude Cusp[J]. Chin. Phys. Lett., 2008, 25(5): 059401
[15] Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source. Identification of Radial Distance of Plasma Dispersionless Injection Boundary from the Injection Source[J]. Chin. Phys. Lett., 2008, 25(2): 059401
Viewed
Full text


Abstract