Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 059101    DOI: 10.1088/0256-307X/26/5/059101
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Theoretical Studies on Defects of Kaolinite in Clays
HE Man-Chao1, FANG Zhi-Jie1, ZHANG Ping2
1State Key Laboratory of Deep Geomechanics and Underground Engineering, China University of Mining and Technology, Beijing 1000832Institute of Applied Physics and Computational Mathematics, Beijing 100088
Cite this article:   
HE Man-Chao, FANG Zhi-Jie, ZHANG Ping 2009 Chin. Phys. Lett. 26 059101
Download: PDF(369KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using the first-principles methods, we study the formation energetics and charge doping properties of the extrinsic substitutional defects in kaolinite. Especially, we choose Be, Mg, Ca, Fe, Cr, Mn, Cu, Zn as extrinsic defects to substitute for Al atoms. By systematically calculating the impurity formation energies and transition energy levels, we find that all group-II defects introduce the relative shallow transition energy levels in kaolinite. Among them, MgAl has the shallowest transition energy level at 0.08eV above the valence band maximum. The transition-elemental defects FeAl, CrAl, and MnAl are found to have relative low formation energies, suggesting their easy formation in kaolinite under natural surrounding conditions. Our calculations show that the defects CuAl and ZnAl have the high formation energies and deep transition energy levels, which exclude the possibility of their formation in natural kaolinite.
Keywords: 91.60.Ed      71.55.-i      91.60.-x     
Received: 26 December 2008      Published: 23 April 2009
PACS:  91.60.Ed (Crystal structure and defects, microstructure)  
  71.55.-i (Impurity and defect levels)  
  91.60.-x (Physical properties of rocks and minerals)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/059101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/059101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HE Man-Chao
FANG Zhi-Jie
ZHANG Ping
[1] He M C, Xu N and Yao A J 2000 J. Chin. Univ. Mini. 10 107
[2] He M C 1996 J. Coal. Sci. 17 10
[3] Adams J M 1983 Clays. Clay. Miner. 31 352
[4] Young R A and Hewat A W 1988 Clays. Clay. Miner. 36 225
[5] Bish D L 1993 Clays. Clay. Miner. 41 {738
[6] Giese R F and Datta P 1973 Am. Mineralogist. 58 471
[7] Giese R F 1982 Bull. Mineralogy 105 417
[8] Hess A C and Saunders V R 1992 Journal of PhysicalChemistry. 96 4367
[9] Hobbs J D, Cygan R T , Nagy K L, Schultz P A, and Sears MP 1997 American Mineralogists 82 657
[10] Benco L , Tunega D, Hafner J and Lischka H 2001 American Mineralogists 86 1057
[11] Angel B R, Jones J P E and Hall P L 1974 Clay.Miner. 10 247
[12] {Bish D L and Von D R 1989 Clays. Clay. Miner. 37 289
[13] Hohenberg P and Kohn W 1964 Phys. Rev. B 136864 Kohn W and Sham L J 1964 Phys. Rev. A 140 1133
[14] Kresse G and Furthm\"{uller J 1996 Phys. Rev. B 54 11169 Kresse G and Furthm\"{uller J 1996 Comput. Mater.Sci. 6 15
[15] Bl\"{ochl P E 1994 Phys. Rev. B 50 17953 Kresse G and Joubert J 1999 Phys. Rev. B 59 1758
[16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[17] Pack J D and Monkhorst H J 1977 Phys. Rev. B 16 1748
[18] Zhang S B, Wei S H, Zunger A and Katayama Y H 1998 Phys. Rev. B 57 964
[19] Wei S H and Zhang S B 2002 Phys. Rev. B 66155211
Related articles from Frontiers Journals
[1] CUI Jin-Ming, CHEN Xiang-Dong, FAN Le-Le, GONG Zhao-Jun, ZOU Chong-Wen, SUN Fang-Wen, HAN Zheng-Fu, GUO Guang-Can. Generation of Nitrogen-Vacancy Centers in Diamond with Ion Implantation[J]. Chin. Phys. Lett., 2012, 29(3): 059101
[2] BAI Yong-Qiang**, ZHU Xing, WU Jun-Zheng, BAI Wen-Guang . Micropore Structure Representation of Sandstone in Petroleum Reservoirs Using an Atomic Force Microscope[J]. Chin. Phys. Lett., 2011, 28(8): 059101
[3] WANG Duo-Jun**, LIU Zai-Yang, YI Li, SHI Bao-Ping . Electrical Properties of Hydrous Forsterite Derived from First-Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(5): 059101
[4] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 059101
[5] YUE Fang-Yu, CHEN Lu, WU Jun, HU Zhi-Gao, LI Ya-Wei, YANG Ping-Xiong, CHU Jun-Hao,. Impurity Activation in MBE-Grown As-Doped HgCdTe by Modulated Photoluminescence Spectra[J]. Chin. Phys. Lett., 2009, 26(4): 059101
[6] LIU Bing-Ce, LIU Ci-Hui, FU Zhu-Xi, Yi Bo. Effects of Grain Boundary Barrier in ZnO/Si Heterostructure[J]. Chin. Phys. Lett., 2009, 26(11): 059101
[7] FANG Zhi-Jie, FANG Cheng, SHI Li-Jie, LIU Yong-Hui, HE Man-Chao. First-Principles Study of Defects in CuGaO2[J]. Chin. Phys. Lett., 2008, 25(8): 059101
[8] JIANG Xiao-Shu, Walter R. L. Lambrecht. Jahn--Teller Distortion of the Zinc Vacancy in ZnGeP2[J]. Chin. Phys. Lett., 2008, 25(3): 059101
[9] PANG Chao, SHI Jun-Jie, ZHANG Yan, K. S. A. Butcher, T. L. Tansley, J. E.Downes, SHANG Jia-Xiang. Electronic Structures of Wurtzite GaN with Ga and N Vacancies[J]. Chin. Phys. Lett., 2007, 24(7): 059101
[10] DING Zong-Ling, XING Huai-Zhong, XU Sheng-Lan, HUANG Yan, CHENXiao-Shuang. First-Principles Study of Electronic Properties in PbS(100) with Vacancy Defect[J]. Chin. Phys. Lett., 2007, 24(11): 059101
[11] F. Ayad, M. Remram. Modelling of Gettering by Mechanical Damage of Metallic Impurities in Silicon[J]. Chin. Phys. Lett., 2006, 23(11): 059101
[12] YI Li, WANG Duo-Jun, LI He-Ping. Electrical Properties of Natural Pyroxenite[J]. Chin. Phys. Lett., 2005, 22(8): 059101
[13] CAI Ling-Cang, CHEN Qi-Feng, CUI Shou-Xin, JING Fu-Qian. The Grüneisen Parameter of NaCl at High Pressures and Temperatures: a Molecular Dynamics Study[J]. Chin. Phys. Lett., 2005, 22(2): 059101
[14] XU Tian, CAO Zhuang-Qi, OU Yong-Cheng, ZHU Guo-Long. Accurate Bound-State Spectra for Hydrogenic Donors in GaAs--(Ga, Al)As Quantum Dots[J]. Chin. Phys. Lett., 2005, 22(11): 059101
[15] LI Guo-Qiang, JIE Wan-Qi, GU Zhi, YANG Ge, WANG Tao. CdZnTe Energy Levels Induced by Doping of Indium[J]. Chin. Phys. Lett., 2004, 21(2): 059101
Viewed
Full text


Abstract