Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 057501    DOI: 10.1088/0256-307X/26/5/057501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Influences of Bi2O3/V2O5 Additives on the Microstructure and Magnetic Properties of Lithium Ferrite
SU Hua, ZHANG Huai-Wu, TANG Xiao-Li, JING Yu-Lan, ZHONG Zhi-Yong
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
SU Hua, ZHANG Huai-Wu, TANG Xiao-Li et al  2009 Chin. Phys. Lett. 26 057501
Download: PDF(973KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lithium ferrite materials with different concentrations of Bi2O3 and V2O5 additives are prepared by the conventional ceramic technique. The x-ray diffraction analysis proves that the additives do not affect the final crystal phase of the lithium ferrite in our testing range. Both Bi2O3 and V2O5 additives could promote densification and lower sintering temperature of the lithium ferrite. The average grain size first increases, and then gradually
decreases with the Bi2O3 content. The maximal grain size appears with 0.25wt% Bi2O3. The average grain size first increases, and then is kept almost unchanged with the V2O5 content. The maximal average grain size of the samples with V2O5 additive is much smaller than that of the samples with Bi2O3 additive. Furthermore, the V2O5 additive more easily enters the crystal lattice of the lithium ferrite than the Bi2O3 additive. These characteristics evidently affect the magnetic properties, such as saturation flux density, ratio of remanence Br to saturation flux density Bs, and coercive force of the lithium ferrite. The mechanisms involved are discussed.
Keywords: 75.50.Dd      75.50.Gg     
Received: 10 November 2008      Published: 23 April 2009
PACS:  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.50.Gg (Ferrimagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/057501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/057501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SU Hua
ZHANG Huai-Wu
TANG Xiao-Li
JING Yu-Lan
ZHONG Zhi-Yong
[1] Fu Y P, Lin C H, Liu C W and Yao Y D 2005 J. Alloy.Compd. 395 247
[2] Nutan G, Mukesh C D, Subhash C K and Dube D C 2005 Ceram. Inter. 31 171
[3] Widatallah H M, Johnson C, Berry F J, Gismelseed A M,Jartych E, Marco J F, Gard F S and Pekala M 2006 J. Phys. Chem.Solid. 67 1817
[4] Roy P K and Bera J 2006 J. Magn. Magn. Mater. 298 38
[5] Teo M L S, Kong L B, Li Z W, Lin G Q and Gan Y B 2008 J. Alloy. Comp. 459 557
[6] Watawe S C, Bamne U A, Gonbare S P and Tangsali R B 2007 Mater. Chem. Phys. 103 323
[7] Cai X B, Zhou X M and Hu G K 2006 Chin. Phys. Lett. 23 348
[8] Zhang H W, Shi Y and Zhong Z Y 2002 Chin. Phys.Lett. 19 269
[9] Wang S F, Wang Y R, Yang T C K, Wang P J and Lu C A 2000 J. Magn. Magn. Mater. 217 35
[10] Murbe J and Topfer J 2006 J. Electroceram 16199
[11] Su H, Zhang H W and Tang X L 2005 Mater. Sci. Eng.B 117 231
Related articles from Frontiers Journals
[1] QI Xin, ZHOU Xin, SHU Di, ZHAO Jing-Jing, WANG Wei, CHEN Juan** . Effect of Porous Structure on the Magnetic Properties of NixMgyZn1−x-yFe2O4 Magnetic Materials[J]. Chin. Phys. Lett., 2011, 28(10): 057501
[2] ZHOU Xin, HOU Zhi-Ling, LI Feng, QI Xin** . Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method[J]. Chin. Phys. Lett., 2010, 27(11): 057501
[3] XIANG Jun, SHEN Xiang-Qian, SONG Fu-Zhan, MENG Xian-Feng. Fabrication and Characterization of Mn0.5Zn0.5Fe2O4 Magnetic Nanofibers[J]. Chin. Phys. Lett., 2010, 27(1): 057501
[4] XUE Gang, PENG Long, ZHANG Huai-Wu. Crystal Structure and Magnetic Properties of Sm2Fe17Nδ Thin Films Deposited on Si (100) Substrates[J]. Chin. Phys. Lett., 2009, 26(9): 057501
[5] LI Chang-Hui, LIU Yi, WANG Fen, LUO Xuan, SUN Yu-Ping, ZHANG Xiang-Qun, CHENG Zhao-Hua, SUN Yang. Photoinduced Magnetization Change in Multiferroic YbFe2O4[J]. Chin. Phys. Lett., 2009, 26(12): 057501
[6] SUN Hui-Yuan, HU Yun-Zhi, LIU Li-Hu. Influence of Temperature on Equilibrium Separation Between Vertical Bloch Lines in OHBs in Garnet Bubble Films[J]. Chin. Phys. Lett., 2009, 26(1): 057501
[7] ZHENG Hong, YANG Yong, WEN Fu-Sheng, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Microwave Magnetic Permeability of Fe3O4 Nanoparticles[J]. Chin. Phys. Lett., 2009, 26(1): 057501
[8] WANG Xiao-Xiong, LI Hong-Nian, XU Ya-Bo, WANG, ZHANG Wen-Hua, XU Fa-Qiang. Electronic Structure of Eu6C60[J]. Chin. Phys. Lett., 2009, 26(1): 057501
[9] SONG Yuan-Qiang, ZHANG Huai-Wu, WEN Qi-Ye, ZHU Hao, John Q. Xiao. Additional Y3+ Doping Effect on Ferromagnetism of Ce0.97Co0.03O2-δ Compounds[J]. Chin. Phys. Lett., 2008, 25(3): 057501
[10] TENG Xiao-Yun, YU Wei, YANG Li-Hua, HAO Qiu-Yan, ZHANG Li, XU He-Ju, LIU Cai-Chi, FU Guang-Sheng. Room-Temperature Ferromagnetism in Zn 1-x MnxO Thin Films Deposited by Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2007, 24(4): 057501
[11] DAI Yao-Dong, HAN Wei, ZHENG Likun, XIA Yuan-Fu. Magnetic Behaviour of Iron Oxychloride and Its Organometallic Intercalation Compounds Studied by Möossbauer Spectroscopy[J]. Chin. Phys. Lett., 2005, 22(8): 057501
[12] WU Jian, ZHANG Shi-Yuan, HU Xiu-Kun. Spin-Polarized Tunnelling Magnetoresistance Effects in La0.833K0.167MnO3/SrTiO3 Polycrystalline Perovskite Manganites[J]. Chin. Phys. Lett., 2005, 22(6): 057501
[13] FANG Yi-Kun, DING Bo-Ming, PANG Zhi-Yong, WANG Bao-Yan, BAO Da-Xin, HAN Sheng-Hao, HAN Bao-Shan. Magnetic and Crystalline Microstructures of the Sr--La--Co M-type Ferrites by Magnetic Force Microscopy[J]. Chin. Phys. Lett., 2005, 22(4): 057501
[14] ZHANG Ning, BAO Jian-Chun, LI Gang, GENG Tao, CHEN Ji-Kang. Intergranular Tunnelling and Field-Induced Percolation Fluctuation of Granular Composites (La1-zAgzMnO3)/(MnO2/Mn2O3)[J]. Chin. Phys. Lett., 2005, 22(11): 057501
[15] WANG Hong-Bo, XUE De-Sheng. Electronic Structures and Magnetic Properties of CoN, NiN and CuN[J]. Chin. Phys. Lett., 2004, 21(8): 057501
Viewed
Full text


Abstract