CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Inter-Layer Energy Transfer through Wetting-Layer States in Bi-layer InGaAs/GaAs Quantum-Dot Structures with Thick Barriers |
XU Zhang-Cheng1, ZHANG Ya-Ting1, Jørn M. Hvam2, Yoshiji Horikoshi3 |
1Nano-photonics Group, Key Laboratory of Weak-Light Nonlinear Photonics Materials (MOE), TEDA College, Nankai University, Tianjin 3004572Department of Communications, Optics and Materials, and Nano.DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark3School of Science & Engineering, Waseda University, Sinjuku-Ku, Tokyo 169-8555, Japan |
|
Cite this article: |
XU Zhang-Cheng, ZHANG Ya-Ting, Jø et al 2009 Chin. Phys. Lett. 26 057304 |
|
|
Abstract The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage at 110K is observed, which can be explained by considering the resonant Förster energy transfer between the wetting layer states at elevated temperatures.
|
Keywords:
73.63.Kv
78.67.-n
78.55.Cr
73.40.Gk
78.55.-m
|
|
Received: 05 February 2009
Published: 23 April 2009
|
|
PACS: |
73.63.Kv
|
(Quantum dots)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.55.Cr
|
(III-V semiconductors)
|
|
73.40.Gk
|
(Tunneling)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
|
|
|
[1] Bimberg D, Grundmann M and Ledentsov N N 1999 QuantumDot Heterostructures (New York: Wiley) [2] Heitz R et al 1998 Phys. Rev. B 58 R10151 [3] Tackeuchi A et al 2000 Phys. Rev. B 62 1568 [4] Mazur Y I et al 2002 Appl. Phys. Lett. 812469 [5]Mazur Yu I et al 2005 Appl. Phys. Lett. 8663102 [6] Tomita A et al 1996 Phys. Rev. B 53 10793 [7] Lyo S K 2000 Phys. Rev. B 62 13641 [8] Klopf F et al 2000 Appl. Phys. Lett. 77 1419 [9] Xu Z C et al 2003 Appl. Phys. Lett. 82 3859 [10] Xu Z C et al 2003 J. Cryst. Growth 251 177 [11] Xu Z C et al 2003 Nanotechnology 14 1259 [12] Xu Z C et al 2004 Appl. Phys. Lett. 85 3259 [13] Xu Z C et al 2006 Appl. Phys. Lett. 89 13113 [14] Xu Z C et al 2007 Nanotechnology 18 325401 [15] Lipinski M O et al 2000 Appl. Phys. Lett. 771789 [16] Sanguinetti S et al 1999 Phys. Rev. B 60 8276 [17]Varshni Y P 1967 Physica 34 149 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|