CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Electric Conductivity of Phosphorus Nanowires |
ZHANG Jing-Xiang1,2, LI Hui1, ZHANG Xue-Qing4, LIEW Kim-Meow3 |
1The Key Lab of Liquid Structure and Heredity of Materials (Ministry of Education), Shandong University, Ji'nan 2500612School of Information Science and Engineering, University of Jinan, Ji'nan 2500223Department of Building and Construction, City University of Hong Kong, Kowloon, Hong Kong4Department of Physics, Ocean University of China, Qingdao 266032 |
|
Cite this article: |
ZHANG Jing-Xiang, LI Hui, ZHANG Xue-Qing et al 2009 Chin. Phys. Lett. 26 056101 |
|
|
Abstract We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them, the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I-V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures.
|
Keywords:
61.46.Fg
73.63.-b
|
|
Received: 11 December 2008
Published: 23 April 2009
|
|
PACS: |
61.46.Fg
|
(Nanotubes)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
|
|
|
[1] Iijima S 1991 Nature 354 56 [2] Svensson K et al 2004 Phys. Rev. Lett. 93145901 [3] Jin-Phillipp N Y et al 2004 Phys. Rev. B 70245421 [4] Chen J Z et al 2008 Chin. Phys. Lett. 251060 [5] Lu W and Lieber C M 2007 Nature Mater. 6 841 [6] Huang Y, Duan X et al 2001 Science 294 1313 [7] Hegger H et al 1996 Phys. Rev. Lett. 77 3885 [8] Sellmyer D J et al 2001 J. Phys.: Condens. Matter 13 R433 [9] Borgstr\"{om M T et al 2008 Nanotechnology 19 445602 [10] Poudyal N et al 2008 Nanotechnology 19355601 [11] Ohnishi H et al 1998 Nature 395 780 [12] Li H, Zhang X Q et al 2007 J. Appl. Phys. 102 013702 [13] Zhang X Q et al 2007 J. Appl. Phys. 102073709 [14] Okano S and Tom\'{anek D 2007 Phys. Rev. B 75 195409 [15] Wang J L et al 2002 Phys. Rev. B 66 085408 [16] Zhao J J et al 2000 Phys Rev. Lett. 85 1706 [17] Wang X X et al 2007 Mater. Res. Bull. 421669 [18] Zhang X et al 2009 Mater. Lett. 63 340 [19] Wu J et al 2007 Chem. Phys. Lett. 441 250 [20] Sivakumar V and Varadaraju U V 2008 J. Solid StateChem. 181 3344 [21] Reich S, Thomsen C and Maultzsch J 2004 CarbonNanotubes: Basic Concepts and Physical Properties (Weinheim: Wiley) [22] Delley B 1990 J. Chem. Phys. 92 508 [23] Wang Y and Perdew J P 1991 Phys. Rev. B 438911 [24] Datta S, Tian W et al 1997 Phys. Rev. Lett. 79 2530 [25] Zahid F, Paulsson M et al 2005 J. Chem. Phys. 123 064707 [26] Zahid F, Paulsson M and Datta S 2003 AdvancedSemiconductor and Organic Nano-techniques I$\!$I$\!$I: Physics andTechnology of Molecular and Biotechnology Systems ed Morko\c{c(London: Academic) [27] Paulsson M and Stafstrom S 2001 Phys. Rev. B 64 035416 [28] Ke S H, Yang W and Baranger H U 2006 J. Chem. Phys. 124 181102 [29] Bogozi A et al 2001 J. Am. Chem. Soc. 1234585 [30] Ashcroft N, Mermin D 1976 Solid State Physics(Philadelphia: Saunders College Publishing) [31] Loiseau A, Launois P, Petit P, Roche S, Salvetat J-P 2006 Understanding Carbon Nanotubes: From Basics to Applications(Berlin: Springer) [32] Abrikosov A A 1988 Fundamentals of the theory ofmetals (Amsterdam: North-Holland) [33] Kane C L, Fisher M P A 1992 Phys. Rev. B 4615233 [34] Hettler M H, Schoeller H and Wenzel W 2002 Europhys.Lett. 57 571 [35] Reed M A 1997 Science 278 252 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|