Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 054701    DOI: 10.1088/0256-307X/26/5/054701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Exact Periodic Solitary Solutions to the Shallow Water Wave Equation
LI Dong-Long1, ZHAO Jun-Xiao2,3
1Department of Information and Computation Science, Guangxi University of Technology, Liuzhou 5450062Institute of Applied Physics and Computational Mathematics, Beijing 1000883School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
LI Dong-Long, ZHAO Jun-Xiao 2009 Chin. Phys. Lett. 26 054701
Download: PDF(1987KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Exact solutions to the shallow wave equation are studied based on the idea of the extended homoclinic test and bilinear method. Some explicit solutions, such as the one soliton solution, the doubly-periodic wave solution and the periodic solitary wave solutions, are obtained. In addition, the properties of the solutions are investigated.
Keywords: 47.35.Fg      05.45.Yv     
Received: 05 January 2009      Published: 23 April 2009
PACS:  47.35.Fg (Solitary waves)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/054701       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/054701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Dong-Long
ZHAO Jun-Xiao
[1] Ablowitz M J et al 1974 Appl. Math. 53 249
[2] Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 40 611
[3] Hirota R 2004 The Direct Method in Soliton Theory(Cambridge: Cambridge University)
[4] Hirota R 1971 Phys. Rev. Lett. 27 1192
[5] Hirota R 1980 Direct Method in Soliton Theory edBullough R K and Caudrey P J (Berlin: Springer)
[6] Hirota R et al 1976 Prog. Theor. Phys. Suppl. 59 64
[7] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355
[8] Matsuno Y 1984 Bilinear Transformation Method (NewYork: Academic)
[9] Huibin L et al 1990 J. Phys. A: Math. Gen. 234097
[10] Lv Z S and Zhang H Q 2003 Phys. Lett. A 307269
[11] Tian B et al 1996 Comput. Phys. Commun. 95139
[12] Malfliet W 2004 J. Comput. Appl. Math. 529164
[13] Wang M L 1996 Phys. Lett. A 213 279
[14] Ablowitz M J et al 1996 Comput. Phys. 126 299
[15] Senthilvela M 2001 Appl. Math. Comput. 123381
[16] Dai Z, Huang J and Jiang M 2006 Phys. Lett. A 352 411
[17] Dai Z, Li Z, Liu Z and Li D 2007 Physica A 384 285
[18] Dai Z, Liu Z 2008 Phys. Lett. A 2008 3725984
[19] Dai Z, Liu Z and Li D 2008 Chin. Phys. Lett. 25 1531
[20] Li D, Dai Z and Guo Y 2008 Chin. Phys. Lett. 25 4189
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 054701
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 054701
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 054701
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 054701
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 054701
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 054701
[7] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 054701
[8] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 054701
[9] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 054701
[10] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 054701
[11] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 054701
[12] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 054701
[13] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 054701
[14] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 054701
[15] WU Jian-Ping** . A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation[J]. Chin. Phys. Lett., 2011, 28(5): 054701
Viewed
Full text


Abstract