Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 054101    DOI: 10.1088/0256-307X/26/5/054101
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Identification of the Amplification Mechanism in the First Free-Electron Laser as Net Stimulated Free-Electron Two-Quantum Stark Emission
S. H. Kim
6300 Roundrock Trail 4203, Plano, Texas 75023, USA
Cite this article:   
S. H. Kim 2009 Chin. Phys. Lett. 26 054101
Download: PDF(197KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We find that the electron phase with respect to the incident laser radiation must be random in the first free-electron laser (FEL) and, hence, the incident laser radiation works as a relaxation force to keep a Maxwellian distribution. We formulate the threshold laser intensity for amplification which agrees with the measured value in the order of magnitude in the first FEL. The magnetic wiggler must produce an electric wiggler whose period is the same as that of the magnetic wiggler. We find that net stimulated free-electron two-quantum Stark (FETQS) emission driven by this electric wiggler is the mechanism responsible for the measured gain and the measured laser intensity at the plateau in the first FEL.
Keywords: 41.60.Cr      42.50.Pq      03.65.Pm     
Received: 29 July 2008      Published: 23 April 2009
PACS:  41.60.Cr (Free-electron lasers)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.65.Pm (Relativistic wave equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/054101       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/054101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. H. Kim
[1] Elias L R et al 1976 Phys. Rev. Lett. 36 717
[2] Kim S H 1984 Phys. Fluids 27 675
[3] Kim S H 2006 Chin. Phys. Lett. 23 1422
[4] Kim S H 2007 J. Korean Phys. Soc. 51 1263
[5] Sakurai J J 1980 Advanced Quantum Mechanics(Reading: Addison-Wesley)
[6] Kim S H 2004 J. Korean Phys. Soc. 45 821
[7] Kim S H 1999 J. Phys. Soc. Jpn. 68 2259
[8] Kim S H 2005 J. Korean Phys. Soc. 46 369
[9] Kim S H 1992 J. Phys. Soc. Jpn. 61 131
[10] Kim S H 1994 J. Korean Phys. Soc. 27 493
[11] Kim S H 1989 Phys. Lett. A 135 44
[12] Kim S H 1989 Phys. Lett. A 135 39
[13] Kim S H 2009 Chin Phys. Lett. 26 011201
[14] Fedorov M V 1981 Prog. Quantum Electron. 7 73
Related articles from Frontiers Journals
[1] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 054101
[2] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 054101
[3] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 054101
[4] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 054101
[5] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 054101
[6] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 054101
[7] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 054101
[8] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 054101
[9] ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai**, LI Wei-Dong . Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System[J]. Chin. Phys. Lett., 2011, 28(4): 054101
[10] HUANG Zeng-Guang**, FANG Wei, LU Hui-Qing, ** . Inflation and Singularity in Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(2): 054101
[11] DENG Hai-Xiao**, FENG Chao, LIU Bo, WANG Dong, WANG Xing-Tao, ZHANG Meng . Characterizing the Temporal Structure of a Relativistic Electron Bunch[J]. Chin. Phys. Lett., 2011, 28(12): 054101
[12] ZHONG Zhi-Rong**, ZHANG Bin, LIN Xiu, SU Wan-Jun . An Effective Heisenberg Spin Chain in a Fiber-Cavity System[J]. Chin. Phys. Lett., 2011, 28(12): 054101
[13] ZOU Wei-Ping, ZHANG Gang, XUE Zheng-Yuan** . Arbitrary and Fast Quantum Gate with Semiconductor Double-Dot Molecules on a Chip[J]. Chin. Phys. Lett., 2011, 28(12): 054101
[14] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 054101
[15] CHEN Zhi-Hua**, LIN Xiu-Min . Generating Entangled States of Multilevel Atoms through a Selective Atom-Field Interaction[J]. Chin. Phys. Lett., 2011, 28(1): 054101
Viewed
Full text


Abstract