Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 050503    DOI: 10.1088/0256-307X/26/5/050503
GENERAL |
A Novel Adaptive Observer-Based Control Scheme for Synchronization and Suppression of a Class of Uncertain Chaotic Systems
WANG Jing1, TAN Zhen-Yu1, MA Xi-Kui2, GAO Jin-Feng3
1School of Electrical Engineering, Shandong University, Jinan 2500612School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 7100493School of Electrical Engineering, Zhengzhou University, Zhengzhou 450002
Cite this article:   
WANG Jing, TAN Zhen-Yu, MA Xi-Kui et al  2009 Chin. Phys. Lett. 26 050503
Download: PDF(317KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel adaptive observer-based control scheme is presented for synchronization and suppression of a class of uncertain chaotic system. First, an adaptive observer based on an orthogonal neural network is designed. Subsequently, the sliding mode controllers via the proposed adaptive observer are proposed for synchronization and suppression of the uncertain chaotic systems. Theoretical analysis and numerical simulation show the effectiveness of the proposed scheme.
Keywords: 05.45.Gg      05.45.Xt     
Received: 06 January 2009      Published: 23 April 2009
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/050503       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/050503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Jing
TAN Zhen-Yu
MA Xi-Kui
GAO Jin-Feng
[1] Wang X M and Zhang J S 2006 Phys. Lett. A 357323
[2] Kakmeni F M 2006 et al Phys. Lett. A 355 47
[3] Chen M C, Zhou D H and Shang Y 2005 Chaos, SolitonsFractals 25 573
[4] Yu W 2005 Int. J. Commun. Systems 18 487
[5] Kim C M et al 2004 Phys. Lett. A 333 235
[6] Wang J, Gao J F and Ma X K 2006 Chin. Phys. Lett. 23 2027
[7] Zhang H G et al 2006 Phys. Lett. A 350 363
[8] Park J H 2006 Chaos, Solitons Fractals 27 549
[9] Yassen M T 2005 Chaos, Solitons Fractals 23131
[10] Elabbasy E M et al 2005 Chaos, Solitons Fractals 23 1299
[11] Guan X P and He Y H 2004 Chin. Phys. Lett. 21227
[12] Yau H T 2004 Chaos, Solitons Fractals 22 341
[13] Park J H Physica Script 2007 76 617
[14] Park J H 2007 Chaos, Solitons Fractals 341552
[15] Jiang G P et al 2006 IEEE Trans. Circuits Syst. II 53 110
[16] Lu J G 2006 Physica A 359 107
[17] \v{Celikovsk\'{y S and Chen G R 2005 IEEE Trans.Autom. Control 50 76
[18] Millerioux G, Anstett F and Bloch G 2005 Math.Comput. Simulation 68 67
[19] Hua C C and Guan X P 2004 Chin. Phys. 13 1391
[20] Li G H, Zhou S P and Xu D M 2004 Chin. Phys. 13 168
[21] Jiang S H and Zhang J 2006 J. System Simulation 18 590 (in Chinese)
[22] Sher C F, Tseng C S and Chen C S 2001 Int. J.Intelligent Systems 16 1377
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 050503
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 050503
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 050503
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 050503
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 050503
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 050503
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 050503
[8] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 050503
[9] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 050503
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 050503
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 050503
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 050503
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 050503
[14] ZHANG Ying-Qian, WANG Xing-Yuan** . A Parameter Modulation Chaotic Secure Communication Scheme with Channel Noises[J]. Chin. Phys. Lett., 2011, 28(2): 050503
[15] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 050503
Viewed
Full text


Abstract