Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 050501    DOI: 10.1088/0256-307X/26/5/050501
GENERAL |
Increasing-order Projective Synchronization of Chaotic Systems with Time Delay
MIAO Qing-Ying1, FANG Jian-An2, TANG Yang2, DONG Ai-Hua2
1Continuing Education School, Shanghai Jiaotong University, Shanghai 2000362School of Information Science and Technology, Donghua University, Shanghai 201620
Cite this article:   
MIAO Qing-Ying, FANG Jian-An, TANG Yang et al  2009 Chin. Phys. Lett. 26 050501
Download: PDF(272KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This work is concerned with lag projective synchronization of chaotic systems with increasing order. The systems under consideration have unknown parameters and different structures. Combining the adaptive control method and feedback control technique, we design a suitable controller and parameter update law to achieve lag synchronization of chaotic systems with increasing order. The result is rigorously proved by the Lyapunov stability theorem. Moreover, corresponding simulation results are given to verify the effectiveness of the proposed methods.
Keywords: 05.45.+b     
Received: 18 November 2008      Published: 23 April 2009
PACS:  05.45.+b  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/050501       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MIAO Qing-Ying
FANG Jian-An
TANG Yang
DONG Ai-Hua
[1] Perora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2]Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou CS 2002 Phys. Rep. 1 366
[3]Nijmeijer H 2001 Phys. D 154 219
[4]Maritan A and Banavar J 1994 Phys. Rev. Lett. 72 1451
[5]Wang X F, Wang Z Q and Chen G 1999 Int. J. Bifur.Chaos 9 1169
[6]Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 76 1816
[7]Yang X S and Chen G 2002 Chaos Solitons Fractals 13 1303
[8]Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys.Rev. Lett. 78 4193
[9]Li D M, Wang Z D, Zhou J, Fang J A and Ni J J 2008 Chaos Solitons Fractals 4 1217
[10]Yu W W and Cao J D 2007 Physica. A 375 467
[11]Zhang Q J and Lu J A 2008 Phys. Lett. A 3721416
[12]Li C D, Liao X F and Wong K W 2004 Physica. D 194 187
[13]Senthilkumar D V and Lakshmanan M 2007 Chaos 17
[14]Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[15]Tang Y and Fang J A 2008 Phys. Lett. A 3721816
[16]Tang Y, Qiu R H, Fang J A and Miao Q Y, 2008 Phys.Lett. A 372 4425
[17]Hu M F, Xu Z Y and Zhang R 2008 Nonlinear Sci. Numer.Simulat. 13 456
[18]Tang Y, Fang J A and Miao Q Y 2009 Neurocomputing 72 1694
[19]Femat R and Solis-Perales G 2002 Phys. Rev. E. 65 036226
[20]Chen J and Liu Z R 2003 Chin. Phys. Lett. 201441
[21]Bowong S and McClintock PVE 2006 Phys. Lett. A 358 134
[22]Ho M C, Hung Y C, Liu Z Y and Jiang I M 2006 Phys.Lett. A 348 251
[23]Genesio R and Tesi A 1992 Automatica 28 531
[24]Lorenz E N 1963 Atmos J. Sci. 20 130
[25]Bishop S R and Clifford M J 1996 J. Sound Vib. 189 142
[26]Chen G and Ueta T 1999 Int. J. Bifur. Chaos 91465
Related articles from Frontiers Journals
[1] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 050501
[2] BU Yun, WEN Guang-Jun, ZHOU Xiao-Jia, ZHANG Qiang. A Novel Adaptive Predictor for Chaotic Time Series[J]. Chin. Phys. Lett., 2009, 26(10): 050501
[3] FANG Jin-Qing, YU Xing-Huo. A New Type of Cascading Synchronization for Halo-Chaos and Its Potential for Communication Applications[J]. Chin. Phys. Lett., 2004, 21(8): 050501
[4] He Wei-Zhong, XU Liu-Su, ZOU Feng-Wu. Dynamics of Coupled Quantum--Classical Oscillators[J]. Chin. Phys. Lett., 2004, 21(8): 050501
[5] YIN Hua-Wei, LU Wei-Ping, WANG Peng-Ye. Determination of Optimal Control Strength of Delayed Feedback Control Using Time Series[J]. Chin. Phys. Lett., 2004, 21(6): 050501
[6] HE Kai-Fen. Hopf Bifurcation in a Nonlinear Wave System[J]. Chin. Phys. Lett., 2004, 21(3): 050501
[7] CHEN Jun, LIU Zeng-Rong. A Method of Controlling Synchronization in Different Systems[J]. Chin. Phys. Lett., 2003, 20(9): 050501
[8] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Synchronization of Discrete Chaotic Systems[J]. Chin. Phys. Lett., 2003, 20(2): 050501
[9] FANG Jin-Qing, YU Xing-Huo, CHEN Guan-Rong. Controlling Halo-Chaos via Variable Structure Method[J]. Chin. Phys. Lett., 2003, 20(12): 050501
[10] ZHANG Guang-Cai, ZHANG Hong-Jun,. Control Method of Cooling a Charged Particle Pair in a Paul Trap[J]. Chin. Phys. Lett., 2003, 20(11): 050501
[11] ZHENG Yong-Ai, NIAN Yi-Bei, LIU Zeng-Rong. Impulsive Control for the Stabilization of Discrete Chaotic System[J]. Chin. Phys. Lett., 2002, 19(9): 050501
[12] LI Ke-Ping, CHEN Tian-Lun. Phase Space Prediction Model Based on the Chaotic Attractor[J]. Chin. Phys. Lett., 2002, 19(7): 050501
[13] ZHANG Hai-Yun, HE Kai-Fen. Charged Particle Motion in Temporal Chaotic and Spatiotemporal Chaotic Fields[J]. Chin. Phys. Lett., 2002, 19(4): 050501
[14] ZHOU Xian-Rong, MENG Jie, , ZHAO En-Guang,. Spectral Statistics in the Cranking Model[J]. Chin. Phys. Lett., 2002, 19(2): 050501
[15] LIN Sheng-Lu, ZHANG Qiu-Ju, ZHAO Ke, SONG Xiao-Hong, ZHANG Yan-Hui. Semiclassical Calculations of Recurrence Spectra for Lithium Atoms in Parallel Electric and Magnetic Fields[J]. Chin. Phys. Lett., 2002, 19(1): 050501
Viewed
Full text


Abstract