Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 050301    DOI: 10.1088/0256-307X/26/5/050301
GENERAL |
Effect of Quantum Point Contact Measurement on Electron Spin State in Quantum Dots
ZHU Fei-Yun, TU Tao, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026
Cite this article:   
ZHU Fei-Yun, TU Tao, HAO Xiao-Jie et al  2009 Chin. Phys. Lett. 26 050301
Download: PDF(307KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the time evolution of two electron spin states in a double quantum-dot system, which includes a nearby quantum point contact (QPC) as a measurement device. We find that the QPC measurement induced decoherence is in the micrsecond timescale. We also find that the enhanced QPC measurement will trap the system in its initial spin states, which is consistent with the quantum Zeno effect.
Keywords: 03.67.Lx      03.65.Yz      03.65.Ta     
Received: 12 January 2009      Published: 23 April 2009
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/050301       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Fei-Yun
TU Tao
HAO Xiao-Jie
GUO Guang-Can
GUO Guo-Ping
[1] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57120
[2] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S andVandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[3] Taylor J M, Engel H A, Dur W, Yacoby A, Marcus C M, ZollerP and Lukin M D 2005 Nature Phys. 1 177
[4] Khaetskii A V and Nazarov Y V 2000 Phys. Rev. B 61 12639
[5] Khaetskii A V and Nazarov Y V 2001 Phys. Rev. B 64 125316
[6] Golovach V N, Khaetskii A V and Loss D 2004 Phys.Rev. Lett. 93 016601
[7] Khaetskii A V, Loss D and Glazman L 2002 Phys. Rev.Lett. 93 186602
[8] Taylor J M, Petta J R, Johnson A C, Yacoby A, Marcus C Mand Lukin M D 2007 Phys. Rev. B 76 035315
[9] Elzerman J M, Hanson R, Willems van Beveren L H, WitkampB, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430431
[10] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A,Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[11] Reilly D J, Taylor J M, Petta J R, Marcus C M, Hanson M Pand Gossard A C 2008 Science 321 817
[12] Gurvitz S A 1997 Phys. Rev. B 56 15215
[13] Engel H A, Golovach V N, Loss D, Vandersypen L M K,Elzerman J M, Hanson R and Kouwenhoven L P 2004 Phys. Rev.Lett. 93 106804
[14] Shaji N, Simmons C B, Thalakulam M et al 2008 NaturePhysics 4 540
[15] Trauzettel B, Bulaev D V, Loss D and Burkard G 2007 Nature Phys. 3 192
[16] Blum K 1996 Density Matrix Theory and Applications(New York: Plenum) chap 8
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 050301
[2] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 050301
[3] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 050301
[4] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 050301
[5] LI Hong-Rong**,ZHANG Pei,GAO Hong,BI Wen-Ting,ALAMRI M. D.,LI Fu-Li. Non-Equilibrium Quantum Entanglement in Biological Systems[J]. Chin. Phys. Lett., 2012, 29(4): 050301
[6] QIN Meng, ZHAI Xiao-Yue, CHEN Xuan, LI Yan-Biao, WANG Xiao, BAI Zhong. Effect of Spin-Orbit Interaction and Input State on Quantum Discord and Teleportation of Two-Qubit Heisenberg Systems[J]. Chin. Phys. Lett., 2012, 29(3): 050301
[7] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 050301
[8] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 050301
[9] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 050301
[10] LI Jun-Gang, **, ZOU Jian, **, XU Bao-Ming, SHAO Bin, . Quantum Correlation Generation in a Damped Cavity[J]. Chin. Phys. Lett., 2011, 28(9): 050301
[11] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 050301
[12] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 050301
[13] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 050301
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 050301
[15] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 050301
Viewed
Full text


Abstract