Chin. Phys. Lett.  2009, Vol. 26 Issue (5): 050203    DOI: 10.1088/0256-307X/26/5/050203
GENERAL |
Quasi-Hamiltonian Structure Associated with an Integrable Coupling System
LUO Lin1, FAN En-Gui2
1Department of Mathematics, Shanghai Second Polytechnic University, Shanghai 2012092School of Mathematical Sciences, Fudan University, Shanghai 200433
Cite this article:   
LUO Lin, FAN En-Gui 2009 Chin. Phys. Lett. 26 050203
Download: PDF(199KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Starting from a spectral problem, a corresponding soliton hierarchy is proposed, and we construct an integrable coupling system with five dependent variables for the hierarchy by using a class of semi-direct sums of Lie algebras. Moreover, it is shown that the coupling system possesses quasi-Hamiltionian structures, and that infinitely many conserved quantities are obtained.
Keywords: 02.90.+p      05.45.Yv     
Received: 22 January 2009      Published: 23 April 2009
PACS:  02.90.+p (Other topics in mathematical methods in physics)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/26/5/050203       OR      https://cpl.iphy.ac.cn/Y2009/V26/I5/050203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Lin
FAN En-Gui
[1] Ablowitz M R and Segur H 1981 Soliton and the InverseScattering Transformation (Philadelphia, PA: SIAM)
[2] Kaup D J and Newell A C 1978 J. Math. Phys. 19798
[3] Qiao Z J 1993 J. Math. Phys. 34 3110
[4] Zeng Y B 1994 Physica D 73 171
[5] Zhou Z X 2002 J. Math. Phys. 43 5002
[6] Cao C W, Geng X G and Wang H Y 2002 J. Math. Phys. 43 621
[7] Ma W X and Xu X X 2004 J. Phys. A: Math. Gen. 37 1323.
[8] Fan E G and Zhang H Q 2000 J. Math. Phys. 412058
[9] Ma W X and Chen M 2006 J. Phys. A 39 10787
[10] Zhang Y F and Fan E G 2007 Phys. Lett. A 36589
[11] Xu X X, Yang H X and Sun Y P 2006 Modern Phys.Lett. B 20 1
[12] Zhou R G 2007 J. Math. Phys. 48 013510
[13] Ma W X and Xu X X and Zhang Y F 2006 Phys. Lett. A 351 125
[14] Guo F K and Zhang Y F 2006 Commun. Theor. Phys. 45 799
[15] Ma W Xand Zhang Y F 2006 J. Math. Phys. 47053501
[16]Fan E G and Zhang Y F 2005 Chaos Solitons Fractals 25 425
[17] Xia T C and Fan E G 2005 J. Math. Phys. 46043510
[18]Luo L and Fan E G 2008 Nonlinear Anal. 69 3450
[19]Luo L, Ma W X and Fan E G 2008 Internat. J. ModernPhys. A 23 1309
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[3] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[4] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[5] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 050203
[6] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 050203
[7] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 050203
[8] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 050203
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 050203
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 050203
[11] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050203
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050203
[13] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 050203
[14] ZHAO Hai-Qiong, ZHU Zuo-Nong**, ZHANG Jing-Li . Hamiltonian Structures and Integrability for a Discrete Coupled KdV-Type Equation Hierarchy[J]. Chin. Phys. Lett., 2011, 28(5): 050203
[15] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 050203
Viewed
Full text


Abstract